挑战杯 opencv python 深度学习垃圾图像分类系统

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 opencv python 深度学习垃圾分类系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

课题简介

如今,垃圾分类已成为社会热点话题。其实在2019年4月26日,我国住房和城乡建设部等部门就发布了《关于在全国地级及以上城市全面开展生活垃圾分类工作的通知》,决定自2019年起在全国地级及以上城市全面启动生活垃圾分类工作。到2020年底,46个重点城市基本建成生活垃圾分类处理系统。

人工垃圾分类投放是垃圾处理的第一环节,但能够处理海量垃圾的环节是垃圾处理厂。然而,目前国内的垃圾处理厂基本都是采用人工流水线分拣的方式进行垃圾分拣,存在工作环境恶劣、劳动强度大、分拣效率低等缺点。在海量垃圾面前,人工分拣只能分拣出极有限的一部分可回收垃圾和有害垃圾,绝大多数垃圾只能进行填埋,带来了极大的资源浪费和环境污染危险。

随着深度学习技术在视觉领域的应用和发展,让我们看到了利用AI来自动进行垃圾分类的可能,通过摄像头拍摄垃圾图片,检测图片中垃圾的类别,从而可以让机器自动进行垃圾分拣,极大地提高垃圾分拣效率。

基于深度学习的垃圾分类系统,是非常好的毕业设计课题


一、识别效果

老样子, 废话不多说,先展示图像垃圾分类的识别效果

训练模型精度:
在这里插入图片描述
可以看到,只迭代了10轮精度达到87.50%,而且没有出现过拟合现象

我最高训练达到96%,迭代200轮

识别结果:
在这里插入图片描述
实际验证正确率还是很高的。

二、实现

1.数据集

该数据集包含了 2507 个生活垃圾图片。数据集的创建者将垃圾分为了 6 个类别,分别是:
在这里插入图片描述
如下所示:

在这里插入图片描述
一共6类垃圾, 比如玻璃类的如下:

在这里插入图片描述
塑料类的如下:

在这里插入图片描述
其他的不列举了。

2.实现原理和方法

使用深度残差网络resnet50作为基石,在后续添加需要的层以适应不同的分类任务
模型的训练需要用生成器将数据集循环写入内存,同时图像增强以泛化模型
使用不包含网络输出部分的resnet50权重文件进行迁移学习,只训练我们在5个stage后增加的层

需要的第三方库主要有tensorflow1.x,keras,opencv,Pillow,scikit-learn,numpy
安装方式很简单,打开terminal,例如:pip install numpy -i
https://pypi.tuna.tsinghua.edu.cn/simple
数据集与权重文件比较大,所以没有上传
如果环境配置方面有问题或者需要数据集与模型权重文件,可以在评论区说明您的问题,我将远程帮助您

3.网络结构

这里我只使用了resnet50的5个stage,后面的输出部分需要我们自己定制,网络的结构图如下:
在这里插入图片描述
stage5后我们的定制网络如下:

    """定制resnet后面的层"""def custom(input_size,num_classes,pretrain):# 引入初始化resnet50模型base_model = ResNet50(weights=pretrain,include_top=False,pooling=None,input_shape=(input_size,input_size, 3),classes=num_classes)#由于有预权重,前部分冻结,后面进行迁移学习for layer in base_model.layers:layer.trainable = False#添加后面的层x = base_model.outputx = layers.GlobalAveragePooling2D(name='avg_pool')(x)x = layers.Dropout(0.5,name='dropout1')(x)#regularizers正则化层,正则化器允许在优化过程中对层的参数或层的激活情况进行惩罚#对损失函数进行最小化的同时,也需要让对参数添加限制,这个限制也就是正则化惩罚项,使用l2范数x = layers.Dense(512,activation='relu',kernel_regularizer= regularizers.l2(0.0001),name='fc2')(x)x = layers.BatchNormalization(name='bn_fc_01')(x)x = layers.Dropout(0.5,name='dropout2')(x)#40个分类x = layers.Dense(num_classes,activation='softmax')(x)model = Model(inputs=base_model.input,outputs=x)#模型编译model.compile(optimizer="adam",loss = 'categorical_crossentropy',metrics=['accuracy'])return model

网络的训练是迁移学习过程,使用已有的初始resnet50权重(5个stage已经训练过,卷积层已经能够提取特征),我们只训练后面的全连接层部分,4个epoch后再对较后面的层进行训练微调一下,获得更高准确率,训练过程如下:

    class Net():def __init__(self,img_size,gar_num,data_dir,batch_size,pretrain):self.img_size=img_sizeself.gar_num=gar_numself.data_dir=data_dirself.batch_size=batch_sizeself.pretrain=pretrain
    def build_train(self):"""迁移学习"""model = resnet.custom(self.img_size, self.gar_num, self.pretrain)model.summary()train_sequence, validation_sequence = genit.gendata(self.data_dir, self.batch_size, self.gar_num, self.img_size)epochs=4model.fit_generator(train_sequence,steps_per_epoch=len(train_sequence),epochs=epochs,verbose=1,validation_data=validation_sequence,max_queue_size=10,shuffle=True)#微调,在实际工程中,激活函数也被算进层里,所以总共181层,微调是为了重新训练部分卷积层,同时训练最后的全连接层layers=149learning_rate=1e-4for layer in model.layers[:layers]:layer.trainable = Falsefor layer in model.layers[layers:]:layer.trainable = TrueAdam =adam(lr=learning_rate, decay=0.0005)model.compile(optimizer=Adam, loss='categorical_crossentropy', metrics=['accuracy'])model.fit_generator(train_sequence,steps_per_epoch=len(train_sequence),epochs=epochs * 2,verbose=1,callbacks=[callbacks.ModelCheckpoint('./models/garclass.h5',monitor='val_loss', save_best_only=True, mode='min'),callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1,patience=10, mode='min'),callbacks.EarlyStopping(monitor='val_loss', patience=10),],validation_data=validation_sequence,max_queue_size=10,shuffle=True)print('finish train,look for garclass.h5')

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/43406.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

昇思25天学习打卡营第13天|应用实践之ResNet50迁移学习

基本介绍 今日的应用实践的模型是计算机实践领域中十分出名的模型----ResNet模型。ResNet是一种残差网络结构,它通过引入“残差学习”的概念来解决随着网络深度增加时训练困难的问题,从而能够训练更深的网络结构。现很多网络极深的模型或多或少都受此影响…

数据链路层(超详细)

引言 数据链路层是计算机网络协议栈中的第二层,位于物理层之上,负责在相邻节点之间的可靠数据传输。数据链路层使用的信道主要有两种类型:点对点信道和广播信道。点对点信道是指一对一的通信方式,而广播信道则是一对多的通信方式…

风险评估:Tomcat的安全配置,Tomcat安全基线检查加固

「作者简介」:冬奥会网络安全中国代表队,CSDN Top100,就职奇安信多年,以实战工作为基础著作 《网络安全自学教程》,适合基础薄弱的同学系统化的学习网络安全,用最短的时间掌握最核心的技术。 这一章节我们需…

grafana数据展示

目录 一、安装步骤 二、如何添加喜欢的界面 三、自动添加注册客户端主机 一、安装步骤 启动成功后 可以查看端口3000是否启动 如果启动了就在浏览器输入IP地址:3000 账号密码默认是admin 然后点击 log in 第一次会让你修改密码 根据自定义密码然后就能登录到界面…

高职物联网实训室

一、高职物联网实训室建设背景 随着《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》的发布,中国正式步入加速数字化转型的新时代。在数字化浪潮中,物联网技术作为连接物理世界与数字世界的桥梁,其重要性日益凸显…

Golang | Leetcode Golang题解之第224题基本计算器

题目&#xff1a; 题解&#xff1a; func calculate(s string) (ans int) {ops : []int{1}sign : 1n : len(s)for i : 0; i < n; {switch s[i] {case :icase :sign ops[len(ops)-1]icase -:sign -ops[len(ops)-1]icase (:ops append(ops, sign)icase ):ops ops[:len(o…

2024年有多少程序员转行了?

疫情后大环境下行&#xff0c;各行各业的就业情况都是一言难尽。互联网行业更是极不稳定&#xff0c;频频爆出裁员的消息。大家都说2024年程序员的就业很难&#xff0c;都很焦虑。 在许多人眼里&#xff0c;程序员可能是一群背着电脑、进入高大上写字楼的职业&#xff0c;他们…

Datawhale AI 夏令营 机器学习挑战赛

一、赛事背景 在当今科技日新月异的时代&#xff0c;人工智能&#xff08;AI&#xff09;技术正以前所未有的深度和广度渗透到科研领域&#xff0c;特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例&#x…

Hi3861 OpenHarmony嵌入式应用入门--MQTT

MQTT 是机器对机器(M2M)/物联网(IoT)连接协议。它被设计为一个极其轻量级的发布/订阅消息传输 协议。对于需要较小代码占用空间和/或网络带宽非常宝贵的远程连接非常有用&#xff0c;是专为受限设备和低带宽、 高延迟或不可靠的网络而设计。这些原则也使该协议成为新兴的“机器…

AutoMQ 生态集成 Kafdrop-ui

Kafdrop [1] 是一个为 Kafka 设计的简洁、直观且功能强大的Web UI 工具。它允许开发者和管理员轻松地查看和管理 Kafka 集群的关键元数据&#xff0c;包括主题、分区、消费者组以及他们的偏移量等。通过提供一个用户友好的界面&#xff0c;Kafdrop 大大简化了 Kafka 集群的监控…

量产工具一一UI系统(四)

目录 前言 一、按钮数据结构抽象 1.ui.h 二、按键处理 1.button.c 2.disp_manager.c 3.disp_manager.h 三、单元测试 1.ui_test.c 2.上机测试 前言 前面我们实现了显示系统框架&#xff0c;输入系统框架和文字系统框架&#xff0c;链接&#xff1a; 量产工具一一显…

集控中心操作台材质选择如何选择

作为集控中心的核心组成部分&#xff0c;操作台不仅承载着各种设备和工具&#xff0c;更是工作人员进行监控、操作和管理的重要平台。因此&#xff0c;选择适合的集控中心操作台材质显得尤为重要。 一、材质选择的考量因素 在选择集控中心操作台材质时&#xff0c;我们需要综合…

SpringCloud跨微服务的远程调用,如何发起网络请求,RestTemplate

在我们的业务流程之中不一定都会是自己模块查询自己模块的信息&#xff0c;有些时候就需要去结合其他模块的信息来进行一些查询完成相应的业务流程&#xff0c;但是在SpringCloud每个模块都相对独立&#xff0c;数据库也有数据隔离。所以当我们需要其他微服务模块的信息的时候&…

前端javascript中的排序算法之选择排序

选择排序&#xff08;Selection Sort&#xff09;基本思想&#xff1a; 是一种原址排序法&#xff1b; 将数组分为两个区间&#xff1a;左侧为已排序区间&#xff0c;右侧为未排序区间。每趟从未排序区间中选择一个值最小的元素&#xff0c;放到已排序区间的末尾&#xff0c;从…

小米采取措施禁止国行版设备安装国际版系统 刷机后将报错无法进入系统

据知名官改版系统 Xiaomi.EU 测试者 Kacper Skrzypek 发布的消息&#xff0c;小米目前已经在开机引导中新增区域检测机制&#xff0c;该机制将识别硬件所属的市场版本&#xff0c;例如中国大陆市场销售的小米即将在安装国际版系统后将无法正常启动。 测试显示该检测机制是在开…

1.DDR3 SO-DIMM 内存条硬件总结

最近在使用fpga读写DDR3&#xff0c;板子上的DDR3有两种形式与fpga相连&#xff0c;一种是直接用ddr3内存颗粒&#xff0c;另一种是通过内存条的形式与fpga相连。这里我们正好记录下和ddr3相关的知识&#xff0c;先从DDR3 SO-DIMM 内存条开始。 1.先看内存条的版本 从JEDEC下载…

《算法笔记》总结No.5——递归

一.分而治之 将原问题划分为若干个规模较小而结构与原问题相同或相似的子问题&#xff0c;然后分别解决这些子问题&#xff0c;最后合并子问题的解&#xff0c;即可得到原问题的解&#xff0c;步骤抽象如下&#xff1a; 分解&#xff1a;将原问题分解为若干子问题解决&#x…

用VLM训练实时计算机视觉模型

经过数十亿个参数训练的 AI 模型非常强大&#xff0c;但并不总是适合实时使用。但是&#xff0c;它们可以通过自动监督快速专用模型的标注来减少人力投入。 ‍ 如果你曾经构建过计算机视觉模型&#xff0c;就就会知道监督需要大量工作——人类花时间&#xff08;数小时或数天&a…

自动化测试全攻略:从入门到精通!

1、自动化测试专栏 随着技术的发展和工作需求的增长&#xff0c;自动化测试已成为软件质量保障体系中不可或缺的一环。 为了帮助广大测试工程师、开发者和对自动化测试感兴趣的读者们更好地掌握这一技能&#xff0c;今年特别推出了全新的《自动化测试全攻略&#xff1a;从入门…