文章SameStr(一):图1代码

“Publication Figure 1”

百度云盘链接: https://pan.baidu.com/s/15g7caZp354zIWktpnWzWhQ

提取码: 4sh7

Libraries

Standard Import

library(tidyverse)
library(cowplot)
library(scales)
library(ggpubr)

Special

# devtools::install_github("pmartinezarbizu/pairwiseAdonis/pairwiseAdonis")
library(pairwiseAdonis)
library(FactoMineR)
# library(rgr)
# library(mixOmics)
library(grid)
library(broom)

Paths

bin_dir = '../bin/'
data_dir = '../data/'
results_dir = '../results/'

Custom Scripts / Theme

source(paste0(bin_dir, 'theme_settings.R'))
source (paste0(bin_dir, 'utilities.R'))
source(paste0(bin_dir, 'analysis_metadata.R'))
date <- format(Sys.time(), "%d%m%y")

Import Tables

Metadata

samples.metadata <- read_tsv(paste0(data_dir, 'samples.metadata.tsv'))
microbe.taxonomy <- read_tsv(paste0(data_dir, 'microbe.taxonomy.tsv')) 
microbe.metadata <- microbe.taxonomy %>% right_join(., read_tsv(paste0(data_dir, 'microbe.metadata.tsv')))

Taxonomy

MetaPhlAn2 tables
combine with taxonomy

mp_species.long <- microbe.taxonomy %>% right_join(., read_tsv(paste0(data_dir, 'samples.mp_profiles.species.tsv')), by = 'species') %>% left_join(., samples.metadata, by = 'Name')mp_species.subsampled.long <- microbe.taxonomy %>% right_join(., read_tsv(paste0(data_dir, 'samples.mp_profiles_subsampled.species.tsv')), by = 'species') %>% left_join(., samples.metadata, by = 'Name')

rCDI subset
annotate with metadata

mp_species.rcdi.long <- mp_species.long %>%filter(Study %in% c(rcdi.studies)) mp_species.subsampled.rcdi.long <- mp_species.subsampled.long %>% filter(Study %in% c(rcdi.studies))

Function

gene_family_annotated <- read_tsv(paste0(data_dir, 'genefamilies.infogo1000.cpm.annotated.tsv'))h2_unstratified <- samples.metadata %>% right_join(., read_tsv(paste0(data_dir, 'samples.h2_profiles.unstratified.tsv')), by = 'Name')

Set Figure

fig = paste0('Fig_1.')

Taxonomic Composition

PCA analysis of species-level sample composition
using data from rCDI recipients, stool donors and post-FMT patients with resolved symptoms

Format

# filter successful post-FMT samples
failed_samples.Name <- samples.metadata %>% filter(!fmt_success & Sample_Type == 'post') %>% pull(Name)# transpose
mp_species.rcdi_success.wide <- mp_species.rcdi.long %>%filter(kingdom == 'Bacteria') %>% filter(!Name %in% failed_samples.Name) %>% pivot_wider(id_cols = 'species', names_from = 'Name',values_from = 'rel_abund', values_fill = list(rel_abund = 0))## -- subsampled
mp_species.subsampled.rcdi_success.wide <- mp_species.subsampled.rcdi.long %>%filter(kingdom == 'Bacteria') %>% filter(!Name %in% failed_samples.Name) %>% pivot_wider(id_cols = 'species', names_from = 'Name',values_from = 'rel_abund', values_fill = list(rel_abund = 0))## -- genus-level
mp_genus.rcdi_success.wide <- mp_species.rcdi.long %>%filter(kingdom == 'Bacteria') %>% filter(!Name %in% failed_samples.Name) %>%pivot_wider(id_cols = 'genus', names_from = 'Name',values_from = 'rel_abund', values_fill = list(rel_abund = 0), values_fn = list(rel_abund = sum))# get data
mp_species.rcdi_success.data <- t(select(mp_species.rcdi_success.wide, matches('.pair'), species) %>% column_to_rownames(var = 'species'))## -- subsampled
mp_species.subsampled.rcdi_success.data <- t(select(mp_species.subsampled.rcdi_success.wide, matches('.pair'), species) %>% column_to_rownames(var = 'species'))## -- genus
mp_genus.rcdi_success.data <- t(select(mp_genus.rcdi_success.wide, matches('.pair'), genus) %>% column_to_rownames(var = 'genus'))

Diversity

Diversity metrics based on species-level relative abundances

Alpha: Shannon Index

mp_species.raw.rcdi_success.shannon <- data.frame(Shannon.raw = diversity(mp_species.rcdi_success.data, index = 'shannon')) %>% rownames_to_column('Name')mp_species.subsampled.rcdi_success.shannon <- data.frame(Shannon.subsampled = diversity(mp_species.subsampled.rcdi_success.data, index = 'shannon')) %>% rownames_to_column('Name')mp_species.raw.rcdi_success.shannon <- full_join(mp_species.raw.rcdi_success.shannon, mp_species.subsampled.rcdi_success.shannon, by = 'Name')

CLR-Transform

# species-level
pseudo = 1e-6remove.na <- function (xx, iftell = TRUE) {if (is.vector(xx)) {nx <- length(xx)x <- na.omit(xx)n <- length(x)m <- 1intype <- "vector"}else {nx <- length(xx[, 1])x <- na.omit(xx)n <- length(x[, 1])m <- length(x[1, ])intype <- "matrix"}nna <- nx - nif (iftell & nna > 0) {if (intype == "matrix") cat(paste("\n ", nna, "row(s) with NA(s) removed from matrix\n"))else {cat(paste("\n ", nna, "NA(s) removed from vector\n"))}}invisible(list(x = x, n = n, m = m, nna = nna))
}clr <- function(xx, ifclose = FALSE, ifwarn = TRUE) {if (is.data.frame(xx)) xx <- as.matrix(xx)if (any(xx < 0, na.rm = TRUE)) stop("Negative values not allowed\n")if(ifwarn) cat("  ** Are the data/parts all in the same measurement units? **\n")temp.x <- remove.na(xx, iftell = FALSE)x <- temp.x$x; nna <- temp.x$nnaif (nna >= 1) cat(" ", nna, "composition(s) with NA(s) removed\n")#if(ifclose) x <- 100 * sweep(x, 1, rowSums(x), "/")#x <- log(x)x <- sweep(x, 1, rowMeans(x), "-")x <- as.matrix(x)return(x = x)
}mp_species.rcdi_success.clr <- clr(mp_species.rcdi_success.data + pseudo,  ifclose = FALSE, ifwarn = TRUE)

Beta: PCA of species-level taxonomic composition

# species-level
mp_species.rcdi_success.clr.pca_data <- PCA(mp_species.rcdi_success.clr, graph = FALSE, scale.unit = F)
mp_species.rcdi_success.clr.pca <- mp_species.rcdi_success.clr.pca_data %>% .$ind %>% .$coord %>% as.data.frame() %>% rownames_to_column(var = 'Name') ## annotate with metadata, diversity
mp_species.rcdi_success.data.clr.pca <- mp_species.rcdi_success.clr.pca %>% left_join(., samples.metadata, by = 'Name') %>% left_join(., mp_species.raw.rcdi_success.shannon, by = 'Name')

Pairwise PERMANOVA (adonis function) testing between rCDI recipients, Donors, and the last available post-FMT sample Showing that composition of rCDI recipient is distinct from donors and post-FMT samples, but last post-FMT time point not different from donors.

mp_species.rcdi_success.data.clr.pca.last <-mp_species.rcdi_success.data.clr.pca %>% filter(last_sample)# n count
mp_species.rcdi_success.data.clr.pca.last %>% group_by(Sample_Type) %>% tally()rcdi.adonis <-pairwise.adonis(x = mp_species.rcdi_success.clr[mp_species.rcdi_success.data.clr.pca.last$Name, ],factors = mp_species.rcdi_success.data.clr.pca.last$Sample_Type,sim.method = 'euclidean',p.adjust.m = 'fdr',perm = 1e3) %>% rename(fdr = p.adjusted) %>% mutate(sig = cut(fdr, breaks = c(-Inf, 0.001, 0.01, 0.05, Inf),labels = c("***", "**", "*", "")))
rcdi.adonis

在这里插入图片描述

PCA Plot shows rCDI recipients clustering separately from post-FMT patients and donors.
Separate clustering of MGH03D-related cases is also visible.

plot <-mp_species.rcdi_success.data.clr.pca %>% ggplot(aes(-Dim.2, -Dim.1, labels = Unique_ID)) +geom_point(shape = 21, size = 8, col = 'black', aes(fill = Sample_Type)) + scale_fill_manual(values = colors.main) +theme_cowplot() + labs(y = paste0('PC 1 (', round(mp_species.rcdi_success.clr.pca_data$eig[1,'percentage of variance'], 1), '%)'), x = paste0('PC 2 (', round(mp_species.rcdi_success.clr.pca_data$eig[2,'percentage of variance'], 1), '%)'),subtitle = 'Taxonomic Composition') +theme(plot.title = element_text(hjust = 0.5),legend.title=element_blank(),aspect.ratio = 1,plot.subtitle = element_text(hjust = .5, size = 12), axis.title = element_text(size = 10),axis.text = element_text(size = 8))
legend <- cowplot::get_legend(plot)plot + theme(legend.position = 'none')
grid.newpage()
grid.draw(legend)

在这里插入图片描述

Exporting plots, tables

output_name = 'TaxonomicDiversity.SuccessfulCases.CLR_PCA'ggsave(plot + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 5, height = 5,filename = paste0(results_dir, fig, output_name, '.Plot.pdf'))ggsave(legend, device = 'pdf', dpi = 300, width = 1.1, height = 1,filename = paste0(results_dir, fig, output_name, '.Legend.pdf'))write_tsv(rcdi.adonis, paste0(results_dir, fig, output_name, '.Adonis.tsv'))

Alpha/Beta Correlation

Correlation analysis of Shannon Index with first principal component (PC 1) of PCA analysis shows that large fraction of variance could be explained by alpha diversity differences between samples.

mp_species.rcdi_success.data.clr.pca.cor <- cor.test(~ Shannon.raw + Dim.1,data = mp_species.rcdi_success.data.clr.pca,method = 'spearman') %>% broom::tidy(.) %>% mutate(estimate.round = round(estimate, 2), sig = cut(p.value, breaks = c(-Inf, 0.001, 0.01, 0.05, Inf),labels = c("***", "**", "*", "ns")))
mp_species.rcdi_success.data.clr.pca.corplot <- mp_species.rcdi_success.data.clr.pca %>% ggplot(aes(Shannon.raw, -Dim.1)) +geom_point(shape = 21, col = 'black', size = 8, aes(fill = Sample_Type)) + geom_smooth(method = 'lm', color = 'black') +  annotate('text', label = paste0('r=', mp_species.rcdi_success.data.clr.pca.cor$estimate.round,' ', mp_species.rcdi_success.data.clr.pca.cor$sig), x = 1.15, y = -40, size = 6) +scale_fill_manual(values = colors.discrete[c(1,2,3)]) +theme_cowplot() + theme(legend.title=element_blank(),aspect.ratio = 1) +labs(x = 'Shannon Index', y = 'PC 1')plot + theme(legend.position = 'none')

在这里插入图片描述

Exporting plot

output_name = 'TaxonomicDiversity.SuccessfulCases.PC1_Shannon'ggsave(plot + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 3, height = 3,filename = paste0(results_dir, fig, output_name, '.Plot.pdf'))ggsave(legend, device = 'pdf', dpi = 300, width = 1.1, height = 1,filename = paste0(results_dir, fig, output_name, '.Legend.pdf'))

Confirming that alpha diversity is representative by comparing Shannon calculated on full and 5M subset of reads generated with seqtk after QC but before MetaPhlAn2.

mp_species.rcdi_success.data.clr.pca %>% ggplot(aes(Shannon.subsampled, Shannon.raw)) +geom_point(shape = 21, col = 'black', size = 8, aes(fill = Sample_Type)) + geom_smooth(method = 'lm', color = 'black') +  stat_cor(method = 'spearman') +scale_fill_manual(values = colors.discrete[c(1,2,3)]) +theme_cowplot() + theme(legend.title=element_blank(),legend.position = 'none', aspect.ratio = 1) +labs(x = 'Shannon Index [5M Subsampled Reads]', y = 'Shannon Index [All Reads]')

Taxa Distinguishing Recipients and Donors

Format

# rcdi_success only excludes failed post-FMT samples
mp_genus.rcdi_success.annotated <- samples.metadata %>% mutate(tag = paste0(Unique_ID, ' ', gsub(gsub(Name, pattern = '.*_', replacement = ''), pattern = '.pair', replacement = ''))) %>% right_join(., as.data.frame(mp_genus.rcdi_success.data) %>% rownames_to_column('Name')) %>% filter(Sample_Type %in% c('recipient','donor'))X.metadata <-mp_genus.rcdi_success.annotated %>% select(Study:tag)X = mp_genus.rcdi_success.annotated %>% column_to_rownames(var = 'tag') %>% select(-Study:-Study_Type) %>% as.data.frame()Y = as.factor(X.metadata$Sample_Type)

sparse PLS Discriminant Analysis

Initial sPLS-DA

sPLS-DA of rCDI recipients and donor samples based on genus-level taxonomy

pseudo = 1e-6data.plsda = mixOmics::plsda(X = X + pseudo, Y, ncomp = nlevels(Y), logratio = 'CLR')
data.perf.plsda = mixOmics::perf(data.plsda, validation = 'Mfold', folds = 5,progressBar = FALSE, nrepeat = 10)plot(data.perf.plsda, overlay = 'measure', sd=TRUE)
mixOmics::plotIndiv(data.plsda , comp = c(1,2),group = Y, ind.names = T,ellipse = T,legend = TRUE, title = 'PLSDA comp 1 - 2')

在这里插入图片描述
在这里插入图片描述

Cross-Validate features

5x10 CV

set.seed(100)
data.tune.splsda = mixOmics::tune.splsda(X + pseudo, Y = Y, ncomp = 2, multilevel = NULL, logratio = 'CLR',validation = c('Mfold'), folds = 5, dist = 'max.dist', nrepeat = 10,progressBar = FALSE)plot(data.tune.splsda)
select.keepX = data.tune.splsda$choice.keepX[1:2]
select.keepX # c(15, 5)

Apply CV features

data.splsda = mixOmics::splsda(X = X + pseudo,  Y = Y, ncomp = 2, keepX = select.keepX, logratio= "CLR",near.zero.var = T,
)
data.perf.splsda = mixOmics::perf(data.splsda, validation = 'Mfold', folds = 5, progressBar = FALSE, nrepeat = 10, dist = 'max.dist')data.perf.splsda$error.ratemixOmics::plotIndiv(data.splsda , comp = c(1,2),group = Y, ind.names = T, ellipse = TRUE, legend = TRUE, title = 'PLSDA comp 1 - 2')

在这里插入图片描述

Plot loadings and save to table

# COMP 1
pL.pc1 <- mixOmics::plotLoadings(data.splsda, title = 'sPLS-DA PC 1',comp = 1, method = 'median', contrib = 'max', size.title = rel(1), border = T, size.name = .5, size.legend = .75, legend.color = colors.discrete[c(4, 1)])
pL.pc1# COMP 2
pL.pc2 <- mixOmics::plotLoadings(data.splsda, title = 'sPLS-DA PC 2',comp = 2, method = 'median', contrib = 'max', size.title = rel(1), border = T, size.name = .5, size.legend = .75, legend.color = colors.discrete[c(4, 1)])
pL.pc2pL <- rbind(pL.pc1$X, pL.pc2$X) %>% rownames_to_column('genus') %>% dplyr::rename(rel_abund.recipient.median_clr = recipient,rel_abund.donor.median_clr = donor,rel_abund.highest = GroupContrib) %>% dplyr::select(genus, rel_abund.donor.median_clr, rel_abund.recipient.median_clr, rel_abund.highest, importance)output_name = 'sPLSDA.DonorRecipient.Loadings'
write_tsv(pL, paste0(results_dir, fig, output_name, '.tsv'))

在这里插入图片描述

sPLS-DA: Heatmap

Heatmap of differentially abundant taxa between rCDI recipients and donors based on clr-transformed genus-level relative abundances. Plots shows typical opportunistic pathogens and oral bacteria to be differentially abundant between groups.

Genera from displayed samples (R/D) in which >=20% of species are predicted orals

genus.oral <- mp_species.rcdi.long %>%filter(kingdom == 'Bacteria') %>% filter(Sample_Type %in% c('recipient', 'donor')) %>% left_join(., microbe.metadata %>% select(species, habit.oral), by = 'species') %>% mutate(genus = gsub(genus, pattern = '_noname', replacement = '')) %>%group_by(genus) %>% summarize(oral_rate = replace_na(sum(habit.oral == T, na.rm = T) / n(), NA), .groups = 'drop') %>% mutate(oral_genus = oral_rate >= 0.20)

Get colors for sample columns and taxa rows

sample_colors <-tibble(Unique_ID.splsda = str_split_fixed(data.splsda$names$sample, pattern = ' ', n = 2)[,1]) %>% cbind(., mp_genus.rcdi_success.annotated %>% select(tag, Unique_ID, fmt_success, Case_Name, Sample_Type)) %>% mutate(color = case_when(Sample_Type == 'recipient' ~ colors.discrete[3],Sample_Type == 'donor' ~ colors.discrete[1], T ~ 'white'))taxa_colors <- tibble(genus = gsub(data.splsda$names$colnames$X, pattern = '_noname', replacement = '')) %>% left_join(., genus.oral, by = 'genus') %>% mutate(color = case_when(oral_genus == T ~ 'gray25',oral_genus == F ~ 'gray95', T ~ 'white'))

Export Heatmap

output_name = 'sPLSDA.DonorRecipient.Heatmap'
mixOmics::cim(data.splsda, row.sideColors = sample_colors$color, col.sideColors = taxa_colors$color, symkey = T, keysize = c(0.8, 0.8), row.names = F, col.names = gsub(data.splsda$names$colnames$X, pattern = '_noname', replacement = ''),save = 'pdf', name.save = paste0(results_dir, fig, output_name),margins = c(20, 6.5),row.cex = .75, col.cex = .5,transpose = T,scale = F, center = T)

Oral Species in rCDI recipients

Pulling Oral species from microbe.metadata

oral_species <-microbe.metadata %>%filter(habit.oral) %>%pull(species)

Format

rcdi.oral_species <- mp_species.rcdi.long %>% filter(last_sample,  fmt_success | Sample_Type != 'post') %>% mutate(oral = species %in% oral_species,rel_abund = rel_abund / 100) %>% group_by(Case_Name, Sample, Days_Since_FMT, Sample_Type) %>% summarize(n = sum(rel_abund > 0, na.rm = T), oral = sum(ifelse(species %in% oral_species & rel_abund > 0, 1, 0), na.rm = T),species_rel_abund = mean(ifelse(species %in% oral_species & rel_abund > 0, rel_abund, 0), na.rm = T),sample_rel_abund = sum(ifelse(species %in% oral_species, rel_abund, 0), na.rm = T), ) %>% mutate(f = oral / n) %>% mutate(source = fct_recode(as.factor(Sample_Type),R = 'recipient',P = 'post',D = 'donor')) %>% pivot_longer(names_to = 'metric', values_to = 'value',cols = c('sample_rel_abund', 'species_rel_abund', 'f'))

Boxplots Oral Taxa

Plot shows enrichment of oral-classified bacteria in rCDI recipients but not donors or controls with decreasing abundances post-FMT.

Cumulative Sample Rel. Abund. of species classified as oral

stat_comparisons = list(c('P', 'D'), c('R', 'D'), c('R', 'P'))plot.sample_rel_abund <-rcdi.oral_species %>% filter(metric == 'sample_rel_abund') %>% ggplot(aes(fct_relevel(source, 'R', 'P', 'D'),value, fill = source)) + stat_boxplot(geom = 'errorbar') +geom_boxplot(show.legend = F) + geom_dotplot(aes(fill = NULL), binaxis = "y", stackdir = "center", binpositions="all", binwidth = 0.01) +theme_cowplot() + scale_y_continuous(labels = percent_format_signif,limits = c(0, 1.21),expand = c(0,0,0.05,0),breaks = c(0, 0.25, 0.5, 0.75, 1)) + scale_fill_manual(values = colors.discrete[c(2,1,3)]) +stat_compare_means(method = 'wilcox', comparisons = stat_comparisons,exact = F, p.adjust = 'fdr', label = 'p.signif',symnum.args = list(cutpoints = c(-Inf, 0.001, 0.01, 0.05, Inf),symbols = c("***", "**", "*", "ns"))) + labs(y = 'Cumulative Sample Rel. Abund.') +theme(axis.title.x = element_blank())
plot.sample_rel_abund + theme(legend.position = 'none')

在这里插入图片描述

Rel. Abund. of Species classified as oral
Majority of oral species are below 0.01% relative abundance.

plot.species_rel_abund <-
rcdi.oral_species %>% filter(metric == 'species_rel_abund') %>% ggplot(aes(fct_relevel(source, 'R', 'P', 'D'),value, fill = source)) + stat_boxplot(geom = 'errorbar') +geom_boxplot(show.legend = F) + geom_dotplot(aes(fill = NULL), binaxis = "y", stackdir = "center", binpositions="all", binwidth = 0.00025) +theme_cowplot() + scale_y_continuous(limits = c(0, NA),labels = percent_format_signif,expand = c(0,0,0.05,0),# breaks = c(0, 0.001, 0.0025, 0.005, 0.01, 0.015)) + scale_fill_manual(values = colors.discrete[c(2,1,3)]) +stat_compare_means(method = 'wilcox', comparisons = stat_comparisons,exact = F, p.adjust = 'fdr', label = 'p.signif',symnum.args = list(cutpoints = c(-Inf, 0.001, 0.01, 0.05, Inf),symbols = c("***", "**", "*", "ns"))) + labs(y = 'Mean Rel. Abund. per Sp.') +theme(axis.title.x = element_blank())
plot.species_rel_abund + theme(legend.position = 'none')

Fraction of Species classified as oral

plot.fraction <-
rcdi.oral_species %>% filter(metric == 'f') %>%ungroup() %>% ggplot(aes(fct_relevel(source, 'R', 'P', 'D'),value, fill = source)) + stat_boxplot(geom = 'errorbar') +geom_boxplot(show.legend = F) + geom_dotplot(aes(fill = NULL), binaxis = "y", stackdir = "center", binpositions="all", binwidth = 0.01) +theme_cowplot() + scale_y_continuous(labels = percent_format_signif,limits = c(0, .75),expand = c(0,0,0.05,0),breaks = c(0, 0.25, 0.5, 0.75, 1)) + scale_fill_manual(values = colors.discrete[c(2,1,3)]) +stat_compare_means(method = 'wilcox', comparisons = stat_comparisons,exact = F, p.adjust = 'fdr', label = 'p.signif', symnum.args = list(cutpoints = c(-Inf, 0.001, 0.01, 0.05, Inf),symbols = c("***", "**", "*", "ns"))) + theme(axis.title.x = element_blank(),legend.title=element_blank(),legend.position = 'none', strip.background = element_blank()) +labs(y = 'Cumulative Fraction of Spp.')plot.fraction + theme(legend.position = 'none')

Exporting plot

output_name = 'OralSpecies'ggsave(plot.sample_rel_abund + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 2.5, height = 3.5,filename = paste0(results_dir, fig, output_name, '.SampleRelAbund', '.Plot.pdf'))
ggsave(plot.species_rel_abund + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 2.5, height = 3.5,filename = paste0(results_dir, fig, output_name, '.SpeciesRelAbund','.Plot.pdf'))
ggsave(plot.fraction + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 2.5, height = 3.5,filename = paste0(results_dir, fig, output_name, '.SpeciesFraction','.Plot.pdf'))

Oxygen Tolerant Species enriched in rCDI recipients

Summarize over oxygen tolerant species

mp_species.tag.long <- samples.metadata %>% right_join(., mp_species.long) %>% filter(last_sample, !Name %in% failed_samples.Name) %>% left_join(., microbe.metadata %>% select(species, oxygen.tolerant), by = 'species') %>% mutate(tag = ifelse(is.na(oxygen.tolerant), 'Unknown',ifelse(oxygen.tolerant, 'Oxygen Tolerant',ifelse(!oxygen.tolerant, 'Oxygen Intolerant', 'Unknown'))),tag.bool = !is.na(tag),tag = as.factor(tag)) %>%group_by(Study_Type, Case_Name, Name, Days_Since_FMT, Sample_Type, tag, fmt_success) %>% summarize(rel_abund = sum(rel_abund, na.rm = T)) %>%ungroup() %>% mutate(tag = fct_relevel(tag, 'Unknown', 'Oxygen Intolerant'))

rCDI recipients show high relative abundance of oxygen-tolerant taxa (fac. anaerobes, microaerophiles) compared to donors. Patients do not fully recover down to donor levels after FMT.

plot <-mp_species.tag.long %>% filter(Study_Type == 'rCDI') %>% mutate(Sample_Type.label = str_to_upper(unlist(str_extract(Sample_Type, pattern = '.')))) %>% filter(!Sample_Type.label == 'P' | fmt_success) %>%ggplot(aes(fct_reorder(paste0('D', Days_Since_FMT, ' | ', Case_Name), Days_Since_FMT),rel_abund / 100, fill = tag)) + geom_bar(stat = 'identity', position = position_fill(), width = 1)  +theme_cowplot() + scale_y_continuous(labels = percent_format(),breaks = c(1, .75, .5, .25, 0),expand = c(0,0)) +scale_fill_manual(values = c(colors.discrete[10], 'grey50', 'grey25')) +theme(axis.title.y = element_blank(), axis.title.x = element_blank(),axis.line.y = element_blank(),axis.text.x = element_blank(),axis.ticks.x = element_blank(),strip.background = element_blank(), strip.text = element_text(size = 14), strip.placement = "outside",legend.title=element_blank(),legend.position = 'bottom') +guides(fill=guide_legend(nrow = 1, reverse = T)) +facet_grid(cols = vars(fct_relevel(Sample_Type.label, 'R','P','D')), scales = 'free_x', space = 'free') 
plot + theme(legend.position = 'none')legend <- cowplot::get_legend(plot)grid.newpage()
grid.draw(legend)
output_name = 'OxygenTolerantSpecies'ggsave(plot + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 5, height = 2.5,filename = paste0(results_dir, fig, output_name, '.Plot.pdf'))
ggsave(legend, device = 'pdf', dpi = 300, width = 5, height = 1,filename = paste0(results_dir, fig, output_name, '.Legend.pdf'))

Control samples are almost exclusively below 1% sample relative abundance.

mp_species.tag.long %>% filter(Study_Type == 'Control') %>% ggplot(aes(fct_reorder(paste0('D', Days_Since_FMT, ' | ', Name), Days_Since_FMT),rel_abund / 100, fill = tag)) + geom_bar(stat = 'identity', width = 1, position = position_fill(),)  +theme_cowplot() + scale_y_continuous(labels = percent_format(),breaks = c(1, .75, .5, .25, 0),expand = c(0,0)) +scale_fill_manual(values = c(colors.discrete[10], 'grey50', 'grey25'),guide = guide_legend(reverse = T)) +theme(axis.title.y = element_blank(), axis.title.x = element_blank(),axis.line.y = element_blank(),axis.text.x = element_blank(),# axis.text.x = element_text(angle = 90, hjust = 1, size = 2),axis.ticks.x = element_blank(),strip.background = element_blank(), strip.text = element_text(size = 14), strip.placement = "outside",legend.title=element_blank(),legend.position = 'none') +facet_grid(cols = vars(Sample_Type), scales = 'free_x', space = 'free')mp_species.tag.long %>% filter(Study_Type == 'Control', tag == 'Oxygen Tolerant') %>% ggplot(aes(fct_reorder(paste0('D', Days_Since_FMT, ' | ', Name), Days_Since_FMT),rel_abund / 100, fill = tag)) + geom_bar(stat = 'identity', width = 1)  +theme_cowplot() + scale_y_continuous(labels = percent_format(),expand = c(0,0)) +scale_fill_manual(values = 'grey25',guide = guide_legend(reverse = T)) +theme(axis.title.y = element_blank(), axis.title.x = element_blank(),axis.line.y = element_blank(),axis.text.x = element_blank(),# axis.text.x = element_text(angle = 90, hjust = 1, size = 2),axis.ticks.x = element_blank(),strip.background = element_blank(), strip.text = element_text(size = 14), strip.placement = "outside",legend.title=element_blank(),legend.position = 'none') +facet_grid(cols = vars(Sample_Type), scales = 'free_x', space = 'free')

Pairwise (R/P/D) testing

mp_species.tag.rcdi.long <- mp_species.tag.long %>% filter(fmt_success | Sample_Type != 'post') %>% # filtering remaining recipientsfilter(Study_Type == 'rCDI', tag == 'Oxygen Tolerant') %>% select(Case_Name, Days_Since_FMT, Sample_Type, rel_abund)plot.testing <- pairwise.wilcox.test(x = mp_species.tag.rcdi.long$rel_abund, g = mp_species.tag.rcdi.long$Sample_Type, paired = F, exact = F, p.adjust.method = 'fdr') %>% broom::tidy(.) %>% mutate(sig = cut(p.value, breaks = c(-Inf, 0.001, 0.01, 0.05, Inf),labels = c("***", "**", "*", "")))
plot.testing

Pairwise (R/P/D) testing paired

mp_species.tag.rcdi.wide <-mp_species.tag.rcdi.long %>% separate_rows(Case_Name, sep = ';') %>% pivot_wider(names_from = 'Sample_Type',values_from = 'rel_abund', id_cols = 'Case_Name',values_fill = list(rel_abund = 0))mp_species.tag.complete.long <-mp_species.tag.rcdi.wide %>% pivot_longer(names_to = 'Sample_Type', values_to = 'value', cols = c('recipient','post','donor'))plot.testing.paired <- pairwise.wilcox.test(x = mp_species.tag.complete.long$value, g = mp_species.tag.complete.long$Sample_Type, paired = T, exact = F, p.adjust.method = 'fdr') %>% broom::tidy(.) %>% mutate(sig = cut(p.value, breaks = c(-Inf, 0.001, 0.01, 0.05, Inf),labels = c("***", "**", "*", "")))
plot.testing.paired

Exporting plots, tables

output_name = 'OxygenTolerantSpecies'
write_tsv(plot.testing, paste0(results_dir, fig, output_name, '.Testing.PWNP.tsv'))
write_tsv(plot.testing.paired, paste0(results_dir, fig, output_name, '.Testing.PWPP.tsv'))

Functional difference rCDI recipients and donors

Gene-content based Indicators for Oxygen Usage and ABx treatment
Plots show increased abundance of these pathways in rCDI recipients, decreasing following FMT treatment.

Format

# data is in CPM
gf <-gene_family_annotated %>% separate(Gene_Family, into = c('Gene_Family_Name', 'Taxonomy'), sep = '[|]', fill = 'right') %>% select(-Taxonomy) %>% group_by(Gene_Family_Name) %>% summarize_all(.funs = funs(sum(., na.rm = T))) %>% group_by(Gene_Family_Name) %>% pivot_longer(names_to = 'Name', values_to = 'value', cols = ends_with(paste0('.pair'))) %>% left_join(., samples.metadata, by = 'Name') %>% separate(Gene_Family_Name, into = c('Gene_Family_ID', 'Gene_Family_Name'), sep = '[:] ', fill = 'right') %>% filter(grepl(Gene_Family_Name, pattern = '[[BP]]')) %>% filter(last_sample, fmt_success | Sample_Type != 'post')

Microbial oxygen usage

Genes: Aerobic Electron Transport Chain

stat_comparisons = list(c('P', 'D'), c('R', 'D'), c('R', 'P'))
pseudo = 1e-2plot.aerobic <-
gf %>% filter(Gene_Family_Name == '[BP] aerobic electron transport chain') %>% mutate(GFN = 'Aerobic Electron\nTransport Chain') %>% mutate(Sample_Type = str_to_upper(str_extract(Sample_Type, '.'))) %>% ggplot(aes(fct_relevel(Sample_Type, 'R','P','D'), value + pseudo, fill = Sample_Type)) + stat_boxplot(geom = 'errorbar') +geom_boxplot(show.legend = F) + geom_dotplot(aes(fill = NULL), binaxis = "y", stackdir = "center", binpositions="all", binwidth = 0.05) +scale_y_continuous(trans = pseudo_log_trans(pseudo, 10),expand = c(0,0,0.1,0), labels = label_number(accuracy = 1),breaks = c(1, 10, 100, 500)) +facet_wrap(~ GFN, scales = 'free_y', nrow = 2) + theme_bw() +scale_fill_manual(values = c(colors.discrete[1], colors.discrete[2], colors.discrete[3])) + labs(y = 'Copies per Million') +theme_cowplot() + theme(legend.title=element_blank(),legend.position = 'none', strip.background = element_blank(),axis.title.x = element_blank()) + stat_compare_means(method = 'wilcox', comparisons = stat_comparisons,exact = F, p.adjust = 'fdr', label = 'p.signif', symnum.args = list(cutpoints = c(-Inf, 0.001, 0.01, 0.05, Inf),symbols = c("***", "**", "*", "ns")))
plot.aerobic

ABx response genes

plot.abx <-gf %>% filter(Gene_Family_Name == '[BP] response to antibiotic') %>% mutate(GFN = 'Response to\nAntibiotics') %>% mutate(Sample_Type = str_to_upper(str_extract(Sample_Type, '.'))) %>% ggplot(aes(fct_relevel(Sample_Type, 'R','P','D'), value + pseudo, fill = Sample_Type)) + stat_boxplot(geom = 'errorbar') +geom_boxplot(show.legend = F) + geom_dotplot(aes(fill = NULL), binaxis = "y", stackdir = "center", binpositions="all", binwidth = 0.015) +scale_y_continuous(trans = pseudo_log_trans(pseudo, 10),expand = c(0,0,0.1,0), breaks = c(1000, 3000, 10000), labels = label_number(accuracy = 1)) +facet_wrap(~ GFN, scales = 'free_y', nrow = 2) + theme_bw() +scale_fill_manual(values = c(colors.discrete[1], colors.discrete[2], colors.discrete[3])) + labs(y = 'Copies per Million') +theme_cowplot() + theme(legend.title=element_blank(),legend.position = 'none', axis.title.x = element_blank(),strip.background = element_blank(),) + stat_compare_means(method = 'wilcox', comparisons = stat_comparisons,exact = F, p.adjust = 'fdr', label = 'p.signif',symnum.args = list(cutpoints = c(-Inf, 0.001, 0.01, 0.05, Inf),symbols = c("***", "**", "*", "ns")))
plot.abx

Exporting plot

output_name = 'FunctionAerobic'
ggsave(plot.aerobic + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 2.5, height = 3.5,filename = paste0(results_dir, fig, output_name, '.Plot.pdf'))output_name = 'FunctionABx'
ggsave(plot.abx + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 2.5, height = 3.5,filename = paste0(results_dir, fig, output_name, '.Plot.pdf'))
stat_comparisons = list(c('P', 'D'), c('R', 'D'), c('R', 'P'), c('D', 'D3'))plot.sulf <-gf %>% filter(Gene_Family_Name %in% c('[BP] hydrogen sulfide biosynthetic process','[BP] sulfur compound transport','[BP] sulfate assimilation, phosphoadenylyl sulfate reduction by phosphoadenylyl-sulfate reductase (thioredoxin)')) %>% mutate(Gene_Family_Name = case_when(Gene_Family_Name == '[BP] hydrogen sulfide biosynthetic process' ~ '[BP] hydrogen sulfide\nbiosynthetic process',Gene_Family_Name == '[BP] sulfate assimilation, phosphoadenylyl sulfate reduction by phosphoadenylyl-sulfate reductase (thioredoxin)' ~ '[BP] sulfate assimilation,\nphosphoadenylyl sulfate reduction\nby phosphoadenylyl-sulfate\n reductase (thioredoxin)',T ~ Gene_Family_Name)) %>% mutate(GFN = Gene_Family_Name) %>% mutate(Sample_Type = str_to_upper(str_extract(Sample_Type, '.'))) %>% mutate(Sample_Type = ifelse(Sample_Type != 'R' & Donor.Subject == "D0_ALM_Case_4;5;6;8;9;12;13;15;17;18;20;21", 'D3', Sample_Type)) %>% ggplot(aes(fct_relevel(Sample_Type, 'R','P','D'), value + pseudo, fill = Sample_Type)) + stat_boxplot(geom = 'errorbar') +geom_boxplot(show.legend = F) + geom_dotplot(aes(fill = NULL), binaxis = "y",stackdir = "center", binpositions="all", binwidth = 0.015) +scale_y_log10(expand = c(0,0,0.1,0), labels = label_number(accuracy = 1)) +facet_wrap(~ GFN, nrow = 1, scales = 'free_y') + theme_bw() +scale_fill_manual(values = c(colors.discrete[c(1,4,2,3)])) + labs(y = 'Copies per Million') +theme_cowplot() + theme(legend.title=element_blank(),legend.position = 'none', axis.title.x = element_blank(),strip.background = element_blank(),) + stat_compare_means(method = 'wilcox', comparisons = stat_comparisons,exact = F, p.adjust = 'fdr', label = 'p.signif',symnum.args = list(cutpoints = c(-Inf, 0.001, 0.01, 0.05, Inf),symbols = c("***", "**", "*", "ns")))
plot.sulf

Functional Composition

PCA analysis of functional composition of rCDI recipients, stool donors and post-FMT patients with resolved symptoms based on clr-transformed pathway relative abundances.
Plot shows rCDI recipients clustering separately from donors with less distinct clusters compared to taxonomic data.

Format

Annotate Humann2 with PWY Classes

h2.rcdi <-h2_unstratified %>% filter(!Name %in% failed_samples.Name) h2.rcdi.wide <-h2_unstratified %>% filter(!Name %in% failed_samples.Name) %>% filter(!is.na(pathway_description)) %>%reshape2::dcast(., pathway_id + pathway_description ~ Name,value.var = 'CPM', fun.aggregate = sum, na.rm = T)# transpose
h2.rcdi_success.wide <- h2_unstratified %>%filter(!Name %in% failed_samples.Name) %>% filter(!is.na(pathway_description)) %>%pivot_wider(id_cols = 'pathway_description', names_from = 'Name',values_from = 'CPM', values_fill = list(CPM = 0))# get data
h2.rcdi_success.data <- t(select(h2.rcdi_success.wide, matches('.pair'), pathway_description) %>% column_to_rownames(var = 'pathway_description'))

Diversity

Diversity metrics based on species-level relative abundances

Alpha: Shannon Index

Alpha Diversity

h2.rcdi_success.shannon <- data.frame(Shannon = diversity(h2.rcdi_success.data, index = 'shannon')) %>% rownames_to_column('Name')

CLR-Transform

# https://cran.r-project.org/web/packages/rgr/index.html
library(rgr)pseudo = 1e-3 # CPM
h2.rcdi_success.clr <- rgr::clr(h2.rcdi_success.data + pseudo,  ifclose = FALSE, ifwarn = TRUE)

Beta: PCA of functional composition

h2.rcdi_success.clr.pca_data <- PCA(h2.rcdi_success.clr, graph = FALSE, scale.unit = F)
h2.rcdi_success.clr.pca <- h2.rcdi_success.clr.pca_data %>% .$ind %>% .$coord %>% as.data.frame() %>% rownames_to_column(var = 'Name') ## annotate with metadata, diversity
h2.rcdi_success.data.clr.pca <- h2.rcdi_success.clr.pca %>% left_join(., samples.metadata, by = 'Name') %>% left_join(., h2.rcdi_success.shannon, by = 'Name')

Pairwise PERMANOVA (adonis function) testing between rCDI recipients, Donors, and the last available post-FMT sample Showing that composition of rCDI recipient is distinct from donors and post-FMT samples, but last post-FMT time point not different from donors.

h2.rcdi_success.data.clr.pca.last <-h2.rcdi_success.data.clr.pca %>% filter(last_sample)# n count
h2.rcdi_success.data.clr.pca.last %>% group_by(Sample_Type) %>% tally()rcdi.adonis <-pairwise.adonis(x = h2.rcdi_success.clr[h2.rcdi_success.data.clr.pca.last$Name, ],factors = h2.rcdi_success.data.clr.pca.last$Sample_Type,sim.method = 'euclidean',p.adjust.m = 'fdr',perm = 1e3) %>% rename(fdr = p.adjusted) %>% mutate(sig = cut(fdr, breaks = c(-Inf, 0.001, 0.01, 0.05, Inf),labels = c("***", "**", "*", "")))
rcdi.adonis

PCA Plot shows rCDI recipients clustering separately from donors and latest post-FMT patients.

plot <-h2.rcdi_success.data.clr.pca %>% ggplot(aes(Dim.2, Dim.1, label = Unique_ID)) +geom_point(shape = 21, col = 'black', size = 8, aes(fill = Sample_Type)) + # Sample_Type scale_fill_manual(values = c(colors.discrete[c(1,2,3)]), guide = guide_legend(reverse = TRUE)) +theme_cowplot() + labs(subtitle = 'Functional Composition') + coord_fixed() +theme(plot.subtitle = element_text(hjust = 0.5),legend.title=element_blank(),aspect.ratio = 1) + labs(y = paste0('PC 1 (', round(h2.rcdi_success.clr.pca_data$eig[1,'percentage of variance'], 1), '%)'), x = paste0('PC 2 (', round(h2.rcdi_success.clr.pca_data$eig[2,'percentage of variance'], 1), '%)'))legend <- cowplot::get_legend(plot)
plot + theme(legend.position = 'none')
grid.newpage()
grid.draw(legend)

Exporting plots, tables

output_name = 'FunctionalDiversity.SuccessfulCases.CLR_PCA'ggsave(plot + theme(legend.position = 'none'), device = 'pdf', dpi = 300, width = 5, height = 5,filename = paste0(results_dir, fig, output_name, '.Plot.pdf'))ggsave(legend, device = 'pdf', dpi = 300, width = 1.1, height = 1,filename = paste0(results_dir, fig, output_name, '.Legend.pdf'))write_tsv(rcdi.adonis, paste0(results_dir, fig, output_name, '.Adonis.tsv'))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/43364.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux 代理export

export http_proxyhttp://10.67.11.138:7890 export https_proxyhttp://10.67.11.138:7890

大/小端模式与位操作

文章目录 1. 大小端模式 2. 大端模式&#xff08;Big-endian&#xff09; 3. 小端模式&#xff08;Little Endian&#xff09; 4. 判断和转换大小端模式 5. 位操作 5.1 移位操作 5.2 取反操作 5.3 位与操作 5.4 位或操作 5.5 置位操作 5.6 清位操作 1. 大小端模式 …

大数据学习之 scala基础(补充)

scala基础&#xff1a; hello world: 写scala可运行文件的注意事项1、如果一个scala文件要运行&#xff0c;class要改成object2、如果是class&#xff0c;就仅单纯代表一个类&#xff0c;如果是object代表的是单例对象3、scala语法中&#xff0c;一句话结束不需要加分号4、sca…

Spring的AOP基础以及AOP的核心概念

2. AOP基础 学习完spring的事务管理之后&#xff0c;接下来我们进入到AOP的学习。 AOP也是spring框架的第二大核心&#xff0c;我们先来学习AOP的基础。 在AOP基础这个阶段&#xff0c;我们首先介绍一下什么是AOP&#xff0c;再通过一个快速入门程序&#xff0c;让大家快速体…

Ubuntu配置GitHub(第一次clone/push)

文章目录 1. 安装Git&检查连接2. 注册GitHub3. 生成&GitHub添加SSH3.1. 检查&删除已有id_rsa3.2. 生成SSH3.3. GitHub添加id_rsa.pub SSH3.4. 检查SSH 4. 继续开发可以参考参考 1. 安装Git&检查连接 安装 sudo apt-get install git检查SSH连接 ssh -T gitgi…

【工具分享】零零信安攻击面管理平台

文章目录 00SEC-ASM™功能介绍功能演示 最近闲来无事&#xff0c;到处网上冲浪&#xff0c;无意间发现了长亭云图攻击面管理平台&#xff0c;无奈需要授权才能使用&#xff0c;于是就找到了平替&#xff1a;零零信安攻击面管理平台。 长亭云图攻击面管理平台&#xff1a;https:…

vue2封装向上滚动组件

目录 1.代码2.使用 1.代码 <template><div class"marquee-wrap" :style"{height: height px}"><ul class"marquee-list":style"animateUpStyle"v-on:mouseover"myMouseover"v-on:mouseout"myMouseout…

工厂方法模式在金融业务中的应用及其框架实现

引言 工厂方法模式&#xff08;Factory Method Pattern&#xff09;是一种创建型设计模式&#xff0c;它定义了一个创建对象的接口&#xff0c;但由子类决定实例化哪一个类。工厂方法模式使得类的实例化延迟到子类。在金融业务中&#xff0c;工厂方法模式可以用于创建不同类型…

惠普Z系列AI台式工作站家族

聚焦智能制造、数据科学及人工智能、3D图形图像等高精尖领域&#xff0c;为客户提供高性能、强稳定、强拓展的台式工作站产品及解决方案。 HP Z1 Tower G9 VR创作 / 设计建模 适用于VR内容创作及设计建模等工作可支持128G DDR5内存&#xff0c;第十四代Intel Core™ vPro™ CPU…

Windows下cmd快速到达指定文件位置(三种方法)

一、图形界面 第一步&#xff1a; 点击此图标 在搜索框输入“cmd”&#xff0c;打开命令提示符 或者&#xff1a; 快捷键windowR&#xff0c;点击“确定” 第二步&#xff1a; 先进盘 比如d盘&#xff0c;输入 d: &#xff08;注意英文输入法&#xff09;&#xff0c;再进文件…

前沿重器[53] | 聊聊搜索系统6:精排

前沿重器 栏目主要给大家分享各种大厂、顶会的论文和分享&#xff0c;从中抽取关键精华的部分和大家分享&#xff0c;和大家一起把握前沿技术。具体介绍&#xff1a;仓颉专项&#xff1a;飞机大炮我都会&#xff0c;利器心法我还有。&#xff08;算起来&#xff0c;专项启动已经…

充分利用视觉信息多问多答合成数据,提升多模态大模型数学推理能力

©PaperWeekly 原创 作者 | 史文浩 单位 | 电子科技大学 论文题目&#xff1a; Math-LLaVA: Bootstrapping Mathematical Reasoning for Multimodal Large Language Models 论文链接&#xff1a; https://arxiv.org/abs/2406.17294 开源链接&#xff1a; https://github.c…

最新国内免费使用GPT4o、4.0、3.5 的方法

为了方便大家对GPT有更好的了解&#xff0c;这里特地整理了一个表格做对比 这些模型展示了OpenAI在自然语言处理领域的持续进步&#xff0c;每一代模型都在理解和生成能力、效率和适用性方面进行了显著提升。 网站汇总 这里顺便给大家汇总一下国内同类型的网站&#xff0c;有…

物联网设计竞赛_10_Jetson Nano中文转汉语语音

在windows中pyttsx3可以让汉字文本输出中文语音&#xff0c;但是在jetson上只能用英文说话 import pyttsx3def hanyu(test):engine pyttsx3.init()rate engine.getProperty(rate)engine.setProperty(rate,125)engine.say(test)engine.runAndWait() hanyu(你好) #engine.save…

qt 按钮链接一个槽函数

在Qt中&#xff0c;按钮&#xff08;比如QPushButton&#xff09;可以通过信号和槽的机制来连接到一个槽函数。这样&#xff0c;当按钮被点击时&#xff0c;槽函数就会被执行。下面是如何将一个按钮链接到一个槽函数的基本步骤&#xff1a; 创建按钮和槽函数&#xff1a; 创建…

每日一练全新考试模式解锁|考试升级

&#x1f64b;频繁有小伙伴咨询&#xff1a;我想举办一场历时一个月的答题活动&#xff0c;学生可以每天打开答题&#xff0c;活动完结后可以导出每天的答题成绩 此前我们都会让小伙伴创建30场考试&#xff0c;然后使用批量分享功能组合起来&#xff0c;对外分享一个链接就可以…

【chatgpt消费者偏好】是什么驱动了游客持续旅游意愿?推文分享—2024-07-08

今天推文的主题是【chatgpt&消费者意愿】 第一篇&#xff1a;文章主要研究了什么因素驱动旅游者继续使用ChatGPT进行旅行服务&#xff0c;并从人类拟态的角度探讨了旅游者对ChatGPT的感知和使用意图。第二篇&#xff1a;本文探讨了ChatGPT-4在生成针对TripAdvisor上发布的…

速盾:cdn防御cc

CDN&#xff08;Content Delivery Network&#xff09;是指在分布式网络中分布服务器群&#xff0c;通过就近访问用户、提供快速可靠的内容传输与加速服务。而CC&#xff08;Challenge Collapsar&#xff09;攻击则是一种常见的网络攻击手段&#xff0c;通过发送大量的请求来超…

基于门控循环单元 GRU 实现股票单变量时间序列预测(PyTorch版)

前言 系列专栏:【深度学习&#xff1a;算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域&#xff0c;讨论了各种复杂的深度神经网络思想&#xff0c;如卷积神经网络、循环神经网络、生成对…

GEE代码实例教程详解:地形分析

简介 在本篇博客中&#xff0c;我们将使用Google Earth Engine (GEE) 对特定区域内的地形进行分析。我们将使用SRTM&#xff08;Shuttle Radar Topography Mission&#xff09;数据集获取高程信息&#xff0c;并计算坡度、坡向等地形属性。此外&#xff0c;我们还将使用ALOS&a…