Python结合MobileNetV2:图像识别分类系统实战

一、目录

  • 算法模型介绍
  • 模型使用训练
  • 模型评估
  • 项目扩展

二、算法模型介绍

图像识别是计算机视觉领域的重要研究方向,它在人脸识别、物体检测、图像分类等领域有着广泛的应用。随着移动设备的普及和计算资源的限制,设计高效的图像识别算法变得尤为重要。MobileNetV2是谷歌(Google)团队在2018年提出的一种轻量级卷积神经网络模型,旨在在保持准确性的前提下,极大地减少模型的参数数量和计算复杂度,从而适用于移动设备和嵌入式系统等资源受限的场景。

背景:

MobileNetV2是MobileNet系列的第二代模型,而MobileNet系列是谷歌团队专门针对移动设备和嵌入式系统开发的一系列轻量级卷积神经网络。MobileNetV2是MobileNetV1的改进版本,它在保持轻量级特性的同时,进一步提高了模型的准确性和效率。

MobileNetV2算法的提出旨在应对传统卷积神经网络在移动设备上表现不佳的问题,如大量的计算量和参数数量,导致模型无法在资源受限的环境中高效运行。

原理:

MobileNetV2算法通过一系列技术策略来实现高效的图像识别。主要包括:

1. 基础构建块:倒残差结构

MobileNetV2使用了一种称为“倒残差结构”的基础构建块,即Inverted Residual Block。这种结构与传统的残差块相反,通过先降维(用1x1卷积减少通道数)再升维(用3x3深度可分离卷积增加通道数),以实现轻量化和模型复杂度的降低。

2. 激活函数:线性整流线性单元(ReLU6)

MobileNetV2采用了ReLU6作为激活函数,相比于传统的ReLU函数,ReLU6在负值部分输出为0,在正值部分输出为最大值6,使得模型更容易训练且更加鲁棒。

3. 深度可分离卷积

MobileNetV2广泛采用深度可分离卷积(Depthwise Separable Convolution),将标准卷积操作分解为深度卷积和逐点卷积,从而大大减少了计算量和参数数量。

4. 网络架构设计

MobileNetV2通过引入多个不同分辨率的特征图来构建网络。在不同层级上使用这些特征图,使得网络能够在不同尺度下学习到图像的语义特征,提高了图像识别的准确性。

应用:

MobileNetV2由于其轻量级特性和高效的计算能力,被广泛应用于移动设备和嵌入式系统上的图像识别任务。在实际应用中,我们可以使用预训练的MobileNetV2模型,将其迁移到特定的图像识别任务中,从而在资源有限的情况下实现高质量的图像识别。

MobileNetV2在图像分类、目标检测、人脸识别等任务中表现出色,成为了移动端图像识别的首选算法之一。

三、模型使用和训练

在本文中为了演示如何实现一个图像识别分类系统,通过选取了5种常见的水果数据集,其文件夹结构如下图所示。

在完成数据集的收集准备后,打开jupyter notebook平台,导入数据集通过以下代码可以计算出数据集的总图片数量。本次使用的数据集总图片约为400张。

import pathlibdata_dir = "./dataset/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

然后通过构建算法模型,由于在TensorFlow中内置了MobileNetV2预训练模型,所以我们可以直接导入该模型。

这段代码的作用是构建一个基于MobileNetV2的图像识别模型,并加载预训练的权重,同时冻结MobileNetV2的卷积部分的权重。后续可以在此基础上进行微调(Fine-tuning),训练该模型以适应特定的图像识别任务。

然后导入训练集、测试集指定其迭代次数,开始训练。

history  = model.fit(train_ds,validation_data=val_ds,epochs=30)

其训练过程如下图所示:

四、模型评估

如下图所示,通过命令查看最后通过model.save方法保存好的模型大小。

模型相比ResNet系列,VGG系列等动辄好几百M的大小相比缩小了许多,便于移动设备的移植安装。

通过打印LOSS图和ACC曲线图观察其模型训练过程,如下图所示。

五、项目扩展

在完成模型训练后,通过model.save方法保存模型为本地文件,然后就可以基于改模型开发出非常多的应用了,比如开发出API接口给别人调用等。

在本项目中基于Django框架开发了一个网页版的识别界面,在该网页界面系统中,用户可以点击鼠标上传一张图片,然后点击按钮进行检测。同时可以将相关识别的相关信息保存在数据库中,管理员通过登录后台可以查看所有的识别信息,为模型优化提供数据支持。

演示视频+代码:
https://www.yuque.com/ziwu/yygu3z/sr43e6q0wormmfpv

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42785.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式-结构型-08-组合模式

文章目录 1、学校院系展示需求2、组合模式基本介绍3、组合模式示例3.1、 解决学校院系展示(透明模式1)3.2、高考的科目(透明模式2)3.3、高考的科目(安全组合模式) 4、JDK 源码分析5、注意事项和细节 1、学校…

存储过程编程-创建(CREATE PROCEDURE)、执行(EXEC)、删除(DROP PROCEDURE)

一、定义 1、存储过程是在SQL服务器上存储的已经编译过的SQL语句组。 2、存储过程分为三类:系统提供的存储过程、用户定义的存储过程和扩展存储过程 (1)系统提供的存储过程:在安装SQL Server时,系统创建了很多系统存…

AI机器人在企业拓客上常见的功能有哪些

AI机器人具备多种功能,这些功能主要基于其被设计和训练的目的。整理了一些常见的AI机器人功能: 1. 语音识别与自然语言处理: - 语音识别:将用户的语音输入转换为文本,以便机器人可以理解和处理。 - 自然语言处理…

QCC5181 歌词歌曲名多国语言显示替代QCC5125 CSR8675

QCC518X作为Qualcomm新一代蓝牙技术芯片,支持最新蓝牙协议V5.4,较QCC512X系列,它有更强大的DSP、CPU。除支持USB、I2S、SPDIF等接口外,还扩展了LE Audio功能,扩展支持AptX Lossless。以5181为例,我们还扩展…

vscode语言模式

1.背景 写vue3ts项目的时候,用到了volar插件,在单文件使用的时候,鼠标悬浮在代码上面会有智能提示; 但是最近volar插件提示被弃用了,然后我按照它的官方提示,安装了Vue-official扩展插件,但是…

Banana Pi BPI-M5 Pro 低调 SBC 采用 Rockchip RK3576 八核 Cortex-A72/A53 AIoT SoC

Banana Pi BPI-M5 Pro,也称为 Armsom Sige5,是一款面向 AIoT 市场的低调单板计算机 (SBC),由 Rockchip RK3576 八核 Cortex-A72/A53 SoC 驱动,提供Rockchip RK3588和RK3399 SoC 之间的中档产品。 该主板默认配备 16GB LPDDR4X 和…

如何大幅减少 Vue.js 中的包大小和加载时间,提升用户体验!

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 你知道吗,根据Google 的一项研究,如果网站加载时间超过 3 秒,53% 的移动用户会离开该网站? 性能优化是一个经常讨论的话题,但很多开发人员并不关心提高应用的速度。 在前端开发中,优化包大小和加载时间对于提升用户体…

下一代 CLI 工具,使用Go语言用于构建令人惊叹的网络应用程序

大家好,今天给大家分享一个创新的命令行工具Gowebly CLI,它专注于使用Go语言来快速构建现代Web应用程序。 Gowebly CLI 是一款免费开源软件,有助于在后端使用 Go、在前端使用 htmx 和 hyperscript 以及最流行的 CSS 框架轻松构建令人惊叹的 W…

入门PHP就来我这(高级)15 ~ 图书删除功能

有胆量你就来跟着路老师卷起来! -- 纯干货,技术知识分享 路老师给大家分享PHP语言的知识了,旨在想让大家入门PHP,并深入了解PHP语言。 今天给大家接着上篇文章实现图书删除功能,来实现删除图书信息记录行的功能。 1 删…

高颜值官网(3):家居用品网站12个,好的创意都在这里。

hello,大家好,我是大千UI工场,本文为大家带来家居用品网站UI,供大家欣赏。

项目代码优化(1)——下单逻辑

给一个电商开发的系统排查,发现漏洞很多。很多经验不够的开发者很容易忽视的逻辑错误陷阱。在给一个项目做二次开发时候,检测到的相关经典案例。这里整理支付和产品相关的逻辑,方便后续查看。,这里进行一些简单的逻辑漏洞梳理与修…

Ubuntu 22.04 LTS 上安装 MySQL8.0.23(在线安装)

目录 在线安装MySQL 步骤1:更新软件包列表 步骤2:安装MySQL服务器 步骤3:启动MySQL服务 步骤4:检查MySQL状态 步骤5:修改密码、权限 在线安装MySQL 步骤1:更新软件包列表 在进行任何软件安装之前&a…

p9函数(1)

int Add(int x,int y) { int z0; zxy; return z; } int main() { int a10; int b20; int sumAdd(a,b); printf("%d\n",sum); return 0; } 字符串求长度 int main() { char arr1[]"bit"; char arr2[20]"###…

移动UI: 什么特征会被认为是简洁风格,用案例告诉你

什么是简洁风格,恐怕一百个人有一百个是理解,本文通过理论分析案例的方式进行探讨。 移动 UI 中的简洁风格通常具有以下几个特征: 1. 平面化设计: 简洁风格的移动 UI 善于运用平面化设计,即去除过多的阴影、渐变和立…

水冷液冷负载系统的六种基本类型

您可以选择六种基本类型的冷却系统,以满足负载的冷却需求。每个人都有其优点和缺点。本文旨在识别不同类型的冷却系统并确定它们的优缺点,以便您可以根据自己的需求做出明智的选择。 液体冷却系统有六种基本类型: 1.液对液 2.闭环干燥系统…

深度讲解 UUID/GUID 的结构、原理以及生成机制

目录 一. 前言 二. 被广泛使用 三. UUID 的结构 3.1. 必须了解的 3.2. 十六进制数字字符(hexDigit) 3.3. UUID 基本结构 3.4. 类型(变体)和保留位 3.5. 版本(子类型) 3.6. 时间戳 3.7. 时钟序列 …

管理《欧盟数字服务法》交易者要求

《数字服务法》合规性 根据《数字服务法》(DSA) 的要求,对于在欧盟地区 (EU) 通过 App Store 分发 App 的所有交易商,Apple 需要验证并显示其联系信息。请指明你是否将以交易商或非交易商的身份在欧盟地区分发任何内容。进一步了解你是否应为交易商。 …

[激光原理与应用-101]:南京科耐激光-激光焊接-焊中检测-智能制程监测系统IPM介绍 - 5 - 3C行业应用 - 电子布局类型

目录 前言: 一、激光在3C行业的应用概述 1.1 概述 1.2 激光焊接在3C-电子行业应用 二、3C电子行业中激光焊接 2.1 纽扣电池 2.2 均温板 2.3 指纹识别器 2.4 摄像头模组 2.5 IC芯片切割 三、3C行业中激光切割 四、激光在3C行业中的其他应用 4.1 涂层去除…

Golang | Leetcode Golang题解之第222题完全二叉树的节点个数

题目&#xff1a; 题解&#xff1a; func countNodes(root *TreeNode) int {if root nil {return 0}level : 0for node : root; node.Left ! nil; node node.Left {level}return sort.Search(1<<(level1), func(k int) bool {if k < 1<<level {return false}…

ubuntu22.04+pytorch2.3安装PyG图神经网络库

ubuntu下安装torch-geometric库&#xff0c;图神经网络 开发环境 ubuntu22.04 conda 24.5.0 python 3.9 pytorch 2.0.1 cuda 11.8 pyg的安装网上教程流传着许多安装方式&#xff0c;这些安装方式主要是&#xff1a;预先安装好pyg的依赖库&#xff0c;这些依赖库需要对应上pyth…