使用 PCA 可视化数据的分类能力

使用 PCA 探索数据分类的效果(使用 Python 代码)

「AI秘籍」系列课程:

  • 人工智能应用数学基础
  • 人工智能Python基础
  • 人工智能基础核心知识
  • 人工智能BI核心知识
  • 人工智能CV核心知识

主成分分析 (PCA) 是数据科学家使用的绝佳工具。它可用于降低特征空间维数并生成不相关的特征。正如我们将看到的,它还可以帮助你深入了解数据的分类能力。我们将带你了解如何以这种方式使用 PCA。提供了 Python 代码片段,完整项目可在GitHub1上找到。

什么是 PCA?

我们先从理论开始。我不会深入讲解太多细节,因为如果你想了解 PCA 的工作原理,有很多很好的资源^2^3。重要的是要知道 PCA 是一种降维算法。这意味着它用于减少用于训练模型的特征数量。它通过从许多特征中构建主成分 (PC) 来实现这一点。

PC 的构造方式是,第一个 PC(即 PC1)尽可能解释特征中的大部分变化。然后 PC2 尽可能解释剩余变化中的大部分变化,依此类推。PC1 和 PC2 通常可以解释总特征变化的很大一部分。另一种思考方式是,前两个 PC 可以很好地总结特征。这很重要,因为它使我们能够在二维平面上直观地看到数据的分类能力。

img

数据集

好的,让我们深入研究一个实际的例子。我们将使用 PCA 来探索乳腺癌数据集^4,我们使用以下代码导入该数据集。目标变量是乳腺癌测试的结果 - 恶性或良性。每次测试都会取出许多癌细胞。然后从每个癌细胞中采取 10 个不同的测量值。这些包括细胞半径和细胞对称性等测量值。为了获得 30 个特征的最终列表,我们以 3 种方式汇总这些测量值。也就是说,我们计算每个测量值的平均值、标准误差和最大值(“最差”值)。在图 1 中,我们仔细研究了其中两个特征 -细胞的平均对称性最差平滑度。

import numpy as np
import pandas as pd
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()data = pd.DataFrame(cancer['data'],columns=cancer['feature_names'])
data['y'] = cancer['target']

在图 1 中,我们可以看到这两个特征有助于区分这两个类别。也就是说,良性肿瘤往往更对称、更光滑。重叠部分仍然很多,因此仅使用这些特征的模型效果不会很好。我们可以创建这样的图表来了解每个单独特征的预测能力。尽管有 30 个特征,但需要分析的图表还是很多。它们也没有告诉我们整个数据集的预测能力。这就是 PCA 发挥作用的地方。

图 1:使用两个特征的散点图

PCA——整个数据集

让我们首先对整个数据集进行 PCA。我们使用下面的代码来执行此操作。我们首先缩放特征,使它们都具有均值为 0 和方差为 1。这很重要,因为 PCA 通过最大化 PC 解释的方差来工作。由于其规模,某些特征往往会具有更高的方差。例如,以厘米为单位测量的距离的方差将高于以公里为单位测量的相同距离。如果不进行缩放,PCA 将被那些方差较大的特征“压倒”。

缩放完成后,我们拟合 PCA 模型并将特征转换为 PC。由于我们有 30 个特征,因此最多可以有 30 个 PC。对于我们的可视化,我们只对前两个感兴趣。你可以在图 2 中看到这一点,其中使用 PC1 和 PC2 创建了散点图。我们现在可以看到两个不同的集群,它们比图 1 中更清晰。

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA#Scale the data
scaler = StandardScaler()
scaler.fit(data)
scaled = scaler.transform(data)#Obtain principal components
pca = PCA().fit(scaled)pc = pca.transform(scaled)
pc1 = pc[:,0]
pc2 = pc[:,1]#Plot principal components
plt.figure(figsize=(10,10))colour = ['#ff2121' if y == 1 else '#2176ff' for y in data['y']]
plt.scatter(pc1,pc2 ,c=colour,edgecolors='#000000')
plt.ylabel("Glucose",size=20)
plt.xlabel('Age',size=20)
plt.yticks(size=12)
plt.xticks(size=12)
plt.xlabel('PC1')
plt.ylabel('PC2')

该图可用于直观地了解数据的预测强度。在本例中,它表明使用整个数据集将使我们能够区分恶性肿瘤和良性肿瘤。但是,仍然有一些异常值(即不明确位于群集中的点)。这并不意味着我们会对这些情况做出错误的预测。我们应该记住,并非所有特征方差都会在前两个 PC 中捕获。在完整特征集上训练的模型可以产生更好的预测。

图 2:使用所有特征的 PCA 散点图

此时,我们应该提到这种方法的一个注意事项。PC1 和 PC2 可以解释特征中很大一部分方差。然而,这并不总是正确的。在某些情况下,PC 可能被认为是特征的糟糕总结。这意味着,即使你的数据可以很好地分离类别,你也可能无法获得清晰的聚类,如图 2 所示。

我们可以使用 PCA 碎石图来确定这是否会是一个问题。我们使用下面的代码创建了此分析的碎石图,如图 3 所示。这是一个条形图,其中每个条形的高度是相关 PC 解释的方差百分比。我们看到,PC1 和 PC2 总共只解释了约 20% 的特征方差。即使只有 20% 的解释,我们仍然得到两个不同的聚类。这强调了数据的预测强度。

var = pca.explained_variance_[0:10] #percentage of variance explained
labels = ['PC1','PC2','PC3','PC4','PC5','PC6','PC7','PC8','PC9','PC10']plt.figure(figsize=(15,7))
plt.bar(labels,var,)
plt.xlabel('Pricipal Component')
plt.ylabel('Proportion of Variance Explained')

图 3. 碎石图
在这里插入图片描述

PCA——特征组

我们还可以使用此过程来比较不同的特征组。例如,假设我们有两组特征。第 1 组具有基于细胞对称性和平滑度特征的所有特征。而第 2 组具有基于周长和凹度的所有特征。我们可以使用 PCA 来直观地了解哪组更适合进行预测。

group_1 = ['mean symmetry', 'symmetry error','worst symmetry',
'mean smoothness','smoothness error','worst smoothness']group_2 = ['mean perimeter','perimeter error','worst perimeter', 
'mean concavity','concavity error','worst concavity']

我们首先创建两组特征。然后分别对每组进行 PCA。这将为我们提供两组 PC,我们选择 PC1 和 PC2 来代表每个特征组。该过程的结果可以在图 4 中看到。

对于第 1 组,我们可以看到有一些分离,但仍然有很多重叠。相比之下,第 2 组有两个不同的簇。因此,从这些图中,我们预计第 2 组中的特征是更好的预测因子。使用第 2 组特征训练的模型应该比使用第 1 组特征训练的模型具有更高的准确率。现在,让我们来测试一下这个假设。

图 4:使用特征组的 PCA 散点图

我们使用下面的代码来训练使用两组特征的逻辑回归模型。在每种情况下,我们使用 70% 的数据来训练模型,其余 30% 的数据来测试模型。第 1 组的测试集准确率为 74%,相比之下,第 2 组的准确率为 97%。因此,第 2 组中的特征是更好的预测因子,这正是我们从 PCA 结果中预期的。

from sklearn.model_selection import train_test_split
import sklearn.metrics as metric
import statsmodels.api as smfor i,g in enumerate(group):x = data[g]x = sm.add_constant(x)y = data['y']x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_state = 101)model = sm.Logit(y_train,x_train).fit() #fit logistic regression modelpredictions = np.around(model.predict(x_test)) accuracy = metric.accuracy_score(y_test,predictions)print("Accuracy of Group {}: {}".format(i+1,accuracy))---
Optimization terminated successfully.Current function value: 0.458884Iterations 7
Accuracy of Group 1: 0.7368421052631579
Optimization terminated successfully.Current function value: 0.103458Iterations 10
Accuracy of Group 2: 0.9707602339181286

最后,我们将了解如何在开始建模之前使用 PCA 来更深入地了解数据。它将让你了解预期的分类准确度。你还将对哪些特征具有预测性建立直觉。这可以让你在特征选择方面占据优势。

如上所述,这种方法并非万无一失。它应该与其他数据探索图和汇总统计数据一起使用。对于分类问题,这些可能包括信息值和箱线图。一般来说,在开始建模之前,从尽可能多的不同角度查看数据是个好主意。

参考


  1. https://github.com/hivandu/public_articles ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42248.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【QT】容器类控件

目录 概述 Group Box 核心属性 Tab Widget 核心属性 核心信号 核心方法 使用示例: 布局管理器 垂直布局 核心属性 使用示例: 水平布局 核⼼属性 (和 QVBoxLayout 属性是⼀致的) 网格布局 核心属性 使用示例: 示例&#x…

2024亚太杯中文赛数学建模B题word+PDF+代码

2024年第十四届亚太地区大学生数学建模竞赛(中文赛项)B题洪水灾害的数据分析与预测:建立指标相关性与多重共线性分析模型、洪水风险分层与预警评价模型、洪水发生概率的非线性预测优化模型,以及大规模样本预测与分布特征分析模型 …

python操作SQLite3数据库进行增删改查

python操作SQLite3数据库进行增删改查 1、创建SQLite3数据库 可以通过Navicat图形化软件来创建: 2、创建表 利用Navicat图形化软件来创建: 存储在 SQLite 数据库中的每个值(或是由数据库引擎所操作的值)都有一个以下的存储类型: NULL. 值是空值。 INTEGER. 值是有符…

Python 算法交易实验76 QTV200日常推进

说明 最近实在太忙, 没太有空推进这个项目,我想还是尽量抽一点点时间推进具体的工程,然后更多的还是用碎片化的时间从整体上对qtv200进行设计完善。有些结构的问题其实是需要理清的,例如: 1 要先基于原始数据进行描述…

浪潮信息元脑服务器支持英特尔®至强®6能效核处理器 展现强劲性能

如今,服务器作为数字经济的核心基础设施,正面临着前所未有的挑战和机遇。作为服务器领域的领军企业,浪潮信息始终站在行业前沿,不断推陈出新,以满足客户日益增长的需求。近日,浪潮信息再次展现技术实力&…

基于GWO-CNN-BiLSTM数据回归预测(多输入单输出)-灰狼优化算法优化CNN-BiLSTM

基于GWO-CNN-BiLSTM数据回归预测(多输入单输出)-灰狼优化算法优化CNN-BiLSTM 1.数据均为Excel数据,直接替换数据就可以运行程序。 2.所有程序都经过验证,保证程序可以运行。 3.具有良好的编程习惯,程序均包含简要注释。 获取方式 https:/…

筛选Github上的一些优质项目

每个项目旁都有标签说明其特点,如今日热捧、多模态、收入生成、机器人、大型语言模型等。 项目涵盖了不同的编程语言和领域,包括人工智能、语言模型、网页数据采集、聊天机器人、语音合成、AI 代理工具集、语音转录、大型语言模型、DevOps、本地文件共享…

Matplotlib 学习

知识点 1.plot():用于绘制线图和 散点图scatter() 函数:plot() 函数可以接受许多可选参数,用于控制图形的外观,例如:颜色: colorblue 控制线条的颜色。线型: linestyle-- 控制线条的样式,例如虚线。标记…

YoloV8改进策略:Block改进|轻量实时的重参数结构|最新改进|即插即用(全网首发)

摘要 本文使用重参数的Block替换YoloV8中的Bottleneck,GFLOPs从165降到了116,降低了三分之一;同时,map50-95从0.937涨到了0.947。 改进方法简单,只做简单的替换就行,即插即用,非常推荐&#xf…

C++_STL---list

list的相关介绍 list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。 list的底层是带头双向循环链表结构,链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。…

IDEA与通义灵码的智能编程之旅

1 概述 本文主要介绍在IDEA中如何安装和使用通义灵码来助力软件编程,从而提高编程效率,创造更大的个人同企业价值。 2 安装通义灵码 2.1 打开IDEA插件市场 点击IDEA的设置按钮,下拉选择Plugins,如下: 2.2 搜索通义灵码 在搜索框中输入“通义灵码”,如下: 2.3 安…

使用ifconfig命令获取当前服务器的内网IP地址

如何使用ifconfig命令获取当前服务器的内网IP地址呢? ifconfig eth0 | grep inet | awk {print $2}

什么是五级流水?银行眼中的“好流水”,到底是什么样的?

无论是按揭买房还是日常贷款,银行流水都是绕不开的一环。规划好你的流水,不仅能让你在申请贷款时更有底气,还可能帮你省下不少冤枉钱。今天,咱们就来一场深度剖析,聊聊如何在按揭贷款、个人经营抵押贷款前,…

代码随想录 数组部分+代码可在本地编译器运行

代码随想录 数组部分,代码可在本地编译器运行 文章目录 数组理论基础704.二分查找题目:思路二分法第一种写法二分法第二种写法 代码 27.移除元素题目:思路-双指针法代码 977.有序数组的平方题目思路-双指针代码 209.长度最小的子数组题目&am…

ChatGPT4深度解析:探索智能对话新境界

大模型chatgpt4分析功能初探 目录 1、探测目的 2、目标变量分析 3、特征缺失率处理 4、特征描述性分析 5、异常值分析 6、相关性分析 7、高阶特征挖掘 1、探测目的 1、分析chat4的数据分析能力,提高部门人效 2、给数据挖掘提供思路 3、原始数据&#xf…

科研绘图系列:R语言径向柱状图(Radial Bar Chart)

介绍 径向柱状图(Radial Bar Chart),又称为雷达图或蜘蛛网图(Spider Chart),是一种在极坐标系中绘制的柱状图。这种图表的特点是将数据点沿着一个或多个从中心向外延伸的轴来展示,这些轴通常围绕着一个中心点均匀分布。 特点: 极坐标系统:数据点不是在直角坐标系中展…

【后端面试题】【中间件】【NoSQL】MongoDB查询优化3(拆分、嵌入文档,操作系统)

拆分大文档 很常见的一种优化手段,在一些特定的业务场景中,会有一些很大的文档,这些文档有很多字段,而且有一些特定的字段还特别的大。可以考虑拆分这些文档 大文档对MongoDB的性能影响还是很大的,就我个人经验而言&…

ASCII码对照表【2024年汇总】

🍺ASCII相关文章汇总如下🍺: 🎈ASCII码对照表(255个ascii字符汇总)🎈🎈ASCII码对照表(Unicode 字符集列表)🎈🎈ASCII码对照表&#x…

Day05-04-持续集成总结

Day05-04-持续集成总结 1. 持续集成2. 代码上线目标项目 1. 持续集成 git 基本使用, 拉取代码,上传代码,分支操作,tag标签 gitlab 用户 用户组 项目 , 备份,https,优化. jenkins 工具平台,运维核心, 自由风格工程,maven风格项目,流水线项目, 流水线(pipeline) mavenpom.xmlta…

【瑞数补环境实战】某网站Cookie补环境与后缀分析还原

文章目录 1. 写在前面2. 特征分析3. 接口分析3. 补JS环境4. 补后缀参数 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走…