代码随想录算法训练Day57|LeetCode200-岛屿数量、LeetCode695-岛屿的最大面积

岛屿数量

题目描述

力扣200-岛屿数量

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例 2:

输入:grid = [["1","1","0","0","0"],["1","1","0","0","0"],["0","0","1","0","0"],["0","0","0","1","1"]
]
输出:3

图一

本题思路,是用遇到一个没有遍历过的节点陆地,计数器就加一,然后把该节点陆地所能遍历到的陆地都标记上。在遇到标记过的陆地节点和海洋节点的时候直接跳过。 这样计数器就是最终岛屿的数量。

那么如果把节点陆地所能遍历到的陆地都标记上呢,就可以使用 DFS,BFS或者并查集。

广度优先搜索 BFS

不少同学用广搜做这道题目的时候,超时了。 这里有一个广搜中很重要的细节:

根本原因是==只要 加入队列就代表 走过,就需要标记,而不是从队列拿出来的时候再去标记走过==。

很多同学可能感觉这有区别吗?

如果从队列拿出节点,再去标记这个节点走过,就会发生下图所示的结果,会导致很多节点重复加入队列。

图二

 `visited[x][y] = true;` 放在的地方,着去取决于我们对 代码中队列的定义,队列中的节点就表示已经走过的节点。 **所以只要加入队列,立即标记该节点走过**

本题完整广搜代码:

class Solution {private static final int[][] dir = { { 0, 1 }, { 1, 0 }, { -1, 0 }, { 0, -1 } }; // 四个方向private void bfs(char[][] grid, boolean[][] visited, int x, int y) {//用于将当前陆地相连的陆地都进行标记Queue<int[]> queue = new LinkedList<>();queue.add(new int[] { x, y });visited[x][y] = true; // 只要加入队列,立刻标记while (!queue.isEmpty()) {int[] cur = queue.poll();int curx = cur[0];// 取出当前节点(curx,cury)int cury = cur[1];// 遍历四个方向,如果相邻节点(nextx,nexty)在网格内切未被访问过,并且其是陆地(1),则将其加入到队列,并将其标记为已访问for (int[] d : dir) {int nextx = curx + d[0];int nexty = cury + d[1];if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length)continue; // 越界了,直接跳过if (!visited[nextx][nexty] && grid[nextx][nexty] == '1') {queue.add(new int[] { nextx, nexty });visited[nextx][nexty] = true; // 只要加入队列立刻标记}}} // 循环直到队列为空,即所有与起始点连通的陆地都被标记为已访问}public int numIslands(char[][] grid) {int n = grid.length;int m = grid[0].length;boolean[][] visited = new boolean[n][m];// 二维布尔数组visited,用于标记网格中每个位置是否已被访问过int result = 0;for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {if (!visited[i][j] && grid[i][j] == '1') {// 当前位置 未访问过的且是陆地,岛屿数量+1result++; // 遇到没访问过的陆地,+1bfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true}}}return result;}
}

深度优先搜索 DFS—模板

//DFS
class Solution {private int[][] dir = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; // 四个方向private void dfs(char[][] grid, boolean[][] visited, int x, int y) {for (int[] d : dir) {int nextx = x + d[0];int nexty = y + d[1];if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length) continue;  // 越界了,直接跳过if (!visited[nextx][nexty] && grid[nextx][nexty] == '1') { // 没有访问过的同时是陆地的visited[nextx][nexty] = true; dfs(grid, visited, nextx, nexty);} }}public int numIslands(char[][] grid) {int n = grid.length;int m = grid[0].length;boolean[][] visited = new boolean[n][m];int result = 0;for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {if (!visited[i][j] && grid[i][j] == '1') { visited[i][j] = true;result++; // 遇到没访问过的陆地,+1dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true}}}return result;}
}

下面的代码使用的是深度优先搜索 DFS 的做法。为了统计岛屿数量同时不重复记录,每当我们搜索到一个岛后,就将这个岛 “淹没” —— 将这个岛所占的地方从 “1” 改为 “0”,这样就不用担心后续会重复记录这个岛屿了。而 DFS 的过程就体现在 “淹没” 这一步中。详见代码:

public int numIslands(char[][] grid) {int res = 0; //记录找到的岛屿数量for(int i = 0;i < grid.length;i++){for(int j = 0;j < grid[0].length;j++){//找到“1”,res加一,同时淹没这个岛if(grid[i][j] == '1'){res++;dfs(grid,i,j);}}}return res;
}
//使用DFS“淹没”岛屿
public void dfs(char[][] grid, int i, int j){//搜索边界:索引越界或遍历到了"0"if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == '0') return;//将这块土地标记为"0"grid[i][j] = '0';//根据"每座岛屿只能由水平方向或竖直方向上相邻的陆地连接形成",对上下左右的相邻顶点进行dfsdfs(grid,i - 1,j);dfs(grid,i + 1,j);dfs(grid,i,j + 1);dfs(grid,i,j - 1);
}

岛屿的最大面积

题目描述

力扣695-岛屿的最大面积

给你一个大小为 m x n 的二进制矩阵 grid

岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻(斜角度的不算)。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

岛屿的面积是岛上值为 1 的单元格的数目。

计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0

示例 1:

img

输入:grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
输出:6
解释:答案不应该是 11 ,因为岛屿只能包含水平或垂直这四个方向上的 1 。

示例 2:

输入:grid = [[0,0,0,0,0,0,0,0]]
输出:0

解题思路

这道题目也是 dfs bfs基础类题目,就是搜索每个岛屿上“1”的数量,然后取一个最大的。

本题思路上比较简单,难点其实都是 dfs 和 bfs的理论基础,关于理论基础我在这里都有详细讲解 :

DFS理论基础(opens new window)

BFS理论基础

根据BFS模板

//BFS
class Solution {private int[][] dir = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; // 表示四个方向void bfs(char[][] grid, boolean[][] visited, int x, int y) {Queue<int[]> queue = new LinkedList<>(); // 定义队列queue.offer(new int[]{x, y}); // 起始节点加入队列visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点while (!queue.isEmpty()) { // 开始遍历队列里的元素int[] cur = queue.poll(); // 从队列取元素int curx = cur[0];int cury = cur[1]; // 当前节点坐标for (int i = 0; i < 4; i++) { // 开始向当前节点的四个方向左右上下去遍历int nextx = curx + dir[i][0];int nexty = cury + dir[i][1]; // 获取周围四个方向的坐标if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length) continue;  // 坐标越界了,直接跳过if (!visited[nextx][nexty]) { // 如果节点没被访问过queue.offer(new int[]{nextx, nexty}); // 队列添加该节点为下一轮要遍历的节点visited[nextx][nexty] = true; // 只要加入队列立刻标记,避免重复访问}}}}
}

BFS

//BFS
class Solution {int[][] dir = {{ 0, 1 }, { 1, 0 }, { 0, -1 }, { -1, 0 }};int count;boolean visited[][];public int maxAreaOfIsland(int[][] grid) {int res = 0;visited = new boolean[grid.length][grid[0].length];for (int i = 0; i < grid.length; i++) {for (int j = 0; j < grid[0].length; j++) {if (visited[i][j] == false && grid[i][j] == 1) {count = 0;bfs(grid, i, j);res = Math.max(res, count);}}}return res;}private void bfs(int[][] grid, int x, int y) {Queue<int[]> queue = new LinkedList<>(); // 定义队列queue.offer(new int[] { x, y }); // 起始节点加入队列visited[x][y] = true; // 只要加入队列,立刻标记为访问过的节点count++; // 将起始节点也算入岛屿面积中while (!queue.isEmpty()) { // 开始遍历队列里的元素int[] cur = queue.poll(); // 从队列取元素int curx = cur[0];int cury = cur[1]; // 当前节点坐标for (int i = 0; i < 4; i++) { // 开始向当前节点的四个方向左右上下去遍历int nextx = curx + dir[i][0];int nexty = cury + dir[i][1]; // 获取周围四个方向的坐标if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length)continue;if (visited[nextx][nexty] == false && grid[nextx][nexty] == 1) {queue.offer(new int[] { nextx, nexty }); // 队列添加该节点为下一轮要遍历的节点visited[nextx][nexty] = true;count++;}}}}}

根据DFS模板

//DFS
class Solution {private int[][] dir = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; // 四个方向private void dfs(char[][] grid, boolean[][] visited, int x, int y) {for (int[] d : dir) {int nextx = x + d[0];int nexty = y + d[1];if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length) continue;  // 越界了,直接跳过if (!visited[nextx][nexty] && grid[nextx][nexty] == '1') { // 没有访问过的同时是陆地的visited[nextx][nexty] = true; dfs(grid, visited, nextx, nexty);} }}public int numIslands(char[][] grid) {int n = grid.length;int m = grid[0].length;boolean[][] visited = new boolean[n][m];int result = 0;for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {if (!visited[i][j] && grid[i][j] == '1') { visited[i][j] = true;result++; // 遇到没访问过的陆地,+1dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 true}}}return result;}
}

DFS

//DFS
class Solution {private int count;private int[][] dir = { { 0, 1 }, { 1, 0 }, { -1, 0 }, { 0, -1 } }; // 四个方向private void dfs(int[][] grid, boolean[][] visited, int x, int y) {for (int[] d : dir) {int nextx = x + d[0];int nexty = y + d[1];if (nextx < 0 || nextx >= grid.length || nexty < 0 || nexty >= grid[0].length)continue; // 越界了,直接跳过if (!visited[nextx][nexty] && grid[nextx][nexty] == 1) { // 没有访问过的 同时 是陆地的visited[nextx][nexty] = true;count++;dfs(grid, visited, nextx, nexty);}}}public int maxAreaOfIsland(int[][] grid) {int n = grid.length;int m = grid[0].length;boolean[][] visited = new boolean[n][m];int result = 0;for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {if (!visited[i][j] && grid[i][j] == 1) {count = 1; // 因为dfs处理下一个节点,所以这里遇到陆地了就先计数,dfs处理接下来的相邻陆地visited[i][j] = true;dfs(grid, visited, i, j); // 将与其链接的陆地都标记上 trueresult = Math.max(result, count);}}}return result;}
}

ps:部分图片和代码来自代码随想录和Leetcode官网

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42045.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端vue后端java使用easyexcel框架下载表格xls数据工具类

一 使用alibaba开源的 easyexcel框架&#xff0c;后台只需一个工具类即可实现下载 后端下载实现 依赖 pom.xml <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>4.1.2</version></dependen…

MATLAB-分类CPO-RF-Adaboost冠豪猪优化器(CPO)优化RF随机森林结合Adaboost分类预测(二分类及多分类)

MATLAB-分类CPO-RF-Adaboost冠豪猪优化器&#xff08;CPO&#xff09;优化RF随机森林结合Adaboost分类预测&#xff08;二分类及多分类&#xff09; 分类CPO-RF-Adaboost冠豪猪优化器&#xff08;CPO&#xff09;优化RF随机森林结合Adaboost分类预测&#xff08;二分类及多分类…

【web前端HTML+CSS+JS】--- HTML学习笔记01

学习链接&#xff1a;黑马程序员pink老师前端入门教程&#xff0c;零基础必看的h5(html5)css3移动端前端视频教程_哔哩哔哩_bilibili 学习文档&#xff1a; Web 开发技术 | MDN (mozilla.org) 一、前后端工作流程 WEB模型&#xff1a;前端用于采集和展示信息&#xff0c;中…

Web漏洞扫描工具AppScan与AWVS测评及使用体验

AppScan和AWVS业界知名的Web漏洞扫描工具&#xff0c;你是否也好奇到底哪一个能力更胜一筹呢&#xff1f;接下来跟随博主一探究竟吧。 1. 方案概览 第一步&#xff1a;安装一个用于评测的Web漏洞靶场&#xff08;本文采用最知名和最广泛使用的靶场&#xff0c;即OWASP Benchma…

啥?你没听过SpringBoot的FatJar?

写在最前面&#xff1a; SpringBoot是目前企业里最流行的框架之一&#xff0c;SpringBoot的部署方式多数采用jar包形式。通常&#xff0c;我们使用java -jar便可以直接运行jar文件。普通的jar只包含当前 jar的信息&#xff0c;当内部依赖第三方jar时&#xff0c;直接运行则会报…

robotframework-appiumLibrary 应用 - 实现 app 自动化

1、安装appiumLibrary第三方库 运行pip命令&#xff1a;pip install robotframework-appiumlibrary 若已安装&#xff0c;需要更新版本可以用命令&#xff1a;pip install -U robotframework-appiumlibrary 2、安装app自动化环境。 参考我的另外一篇专门app自动化环境安装的…

设计模式探索:策略模式

1. 什么是策略模式&#xff08;Strategy Pattern&#xff09; 定义 策略模式&#xff08;Strategy Pattern&#xff09;的原始定义是&#xff1a;定义一系列算法&#xff0c;将每一个算法封装起来&#xff0c;并使它们可以相互替换。策略模式让算法可以独立于使用它的客户端而…

打卡第4天----链表

通过学习基础,发现我的基本功还得需要再练练,思路得再更加清晰明了,这样子做算法题才能驾轻就熟。每天记录自己的进步。 一、两两交换 题目编号:24 题目描述: 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本…

[数据结构] 基于交换的排序 冒泡排序快速排序

标题&#xff1a;[数据结构] 基于交换的排序 冒泡排序&&快速排序 水墨不写bug &#xff08;图片来源于网络&#xff09; 目录 &#xff08;一&#xff09;冒泡排序 优化后实现&#xff1a; &#xff08;二&#xff09;快速排序 I、实现方法&#xff1a; &#…

opencv环境搭建-python

最近遇到了一些图像处理的需求&#xff0c;所以需要学习一下opencv,来记录一下我的学习历程。 安装numpy pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy安装matplotlib pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib安装opencv …

ctfshow web入门 web338--web344

web338 原型链污染 comman.js module.exports {copy:copy };function copy(object1, object2){for (let key in object2) {if (key in object2 && key in object1) {copy(object1[key], object2[key])} else {object1[key] object2[key]}}}login.js var express …

gcc/g++的四步编译

目录 前言1.预处理&#xff08;进行宏替换&#xff09;2.编译&#xff08;生成汇编&#xff09;3.汇编&#xff08;生成二进制文件&#xff09;4. 链接 &#xff08;生成可执行文件&#xff09;a. 动态库 && 动态链接b. 静态库 && 静态链接c. 验证d. 动静态链接…

技术实现路径怎么写?(Word项目技术路径文档参考)

软件项目编写技术实现路径至关重要&#xff0c;因为它为项目团队提供了清晰的开发蓝图。这一路径明确了从项目启动到交付各阶段所需的技术方案、步骤及预期成果&#xff0c;有助于团队统一认识&#xff0c;确保开发工作有序进行。同时&#xff0c;技术实现路径有助于识别潜在的…

HetuEngine简介

目录 HetuEngine是什么&#xff1f; HetuEngine的特点以及使用场景 特点 使用场景 HetuEngine介绍 结构 近期用到了Hetu&#xff0c;了解下这个工具是起什么作用的。 HetuEngine是什么&#xff1f; 是引擎&#xff0c;设计是为了让与当前的大数据生态完美融合的引擎&am…

本安防爆手机:危险环境下的安全通信解决方案

在石油化工、煤矿、天然气等危险环境中&#xff0c;通信安全是保障工作人员生命安全和生产顺利进行的关键。防爆智能手机作为专为这些环境设计的通信工具&#xff0c;提供了全方位的安全通信解决方案。 防爆设计与材料&#xff1a; 防爆智能手机采用特殊的防爆结构和材料&…

Mysql部署MHA高可用

部署前准备&#xff1a; mysql-8.0.27下载地址&#xff1a;https://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.27-1.el7.x86_64.rpm-bundle.tar mha-manager下载地址&#xff1a;https://github.com/yoshinorim/mha4mysql-manager/releases/download/v0.58/mha4mysql-mana…

为什么需要做网络安全服务?

网络安全服务之所以重要&#xff0c;是因为它在保护数字资产、维护企业运营、确保法规遵从、防范恶意行为以及建立信任等方面扮演着关键角色。以下是一些主要的理由&#xff1a; 保护核心资产和数据&#xff1a; 数字化转型使得企业数据变得极其宝贵&#xff0c;包括知识产权、…

深度学习模型加密python版本

支持加密的模型: # torch、torch script、onnx、tensorrt 、torch2trt、tensorflow、tensorflow2tensorrt、paddlepaddle、paddle2tensorrt 深度学习推理模型通常以文件的形式进行保存&#xff0c;相应的推理引擎通过读取模型文件并反序列化即可进行推理过程. 这样一来&#…

20K Stars!一个轻量级的 JS 库

大家好,我是CodeQi! 一位热衷于技术分享的码仔。 Driver.js 是一个轻量级的 JavaScript 库,旨在帮助开发人员创建网站或应用程序的引导和教程。通过 Driver.js,您可以引导用户了解网站的各个功能和使用方式。 Driver.js 提供了高度可定制的功能,使其能够适应各种需求和…

使用Python绘制和弦图

使用Python绘制和弦图 和弦图效果代码 和弦图 和弦图用于展示数据的多对多关系&#xff0c;适合用于社交网络、交通流量等领域的分析。 效果 代码 import pandas as pd import holoviews as hv from holoviews import opts hv.extension(bokeh)# 示例数据 data [(A, B, 2),…