AI时代算法面试:揭秘高频算法问题与解答策略

三种决策树算法的特点和区别

  • ID3算法:基本的决策树算法,适用于简单的分类问题
  • C4.5算法:改进了ID3算法,适用于更复杂的分类问题,可以处理连续型数据和缺失值
  • CART算法:更加通用的决策树算法,适用于分类和回归问题,可以处理连续型数据和多分类问题

决策树算法详解:从构造到剪枝,实战Titanic生存预测_决策树分类算法及应用-CSDN博客

Lightgbm原理以及过程

  1. LightGBM(Light Gradient Boosting Machine)是由微软开发的一种基于决策树的分布式梯度提升框架,专门用于快速、高效的机器学习模型训练
  2. LightGBM 是一个性能高度优化的 GBDT(Gradient Boosting Decision Trees)算法。
  3. LightGBM 对传统的 GBDT 进行了多种改进和优化,以提高效率和性能。
  4. 它在处理大规模数据集和高维数据时速度更快,占用内存更少。

以下是 LightGBM 的基本原理简单讲解: 

  • 梯度提升(Gradient Boosting)

    • 梯度提升是一种集成学习方法,通过逐步构建一系列弱学习器(通常是决策树),每个学习器试图纠正前一个学习器的错误。LightGBM 采用这种方法,但对算法进行了多种优化,以提高效率和性能。
  • 基于叶子的增长策略(Leaf-wise Growth Strategy)

    • 与其他基于深度或宽度的增长策略不同,LightGBM 使用基于叶子的增长策略,即每次选择一个叶子节点来分裂,从而最大化信息增益。这种方法能够更好地减少损失,但也可能导致树的不平衡。
  • 直方图优化(Histogram-based Optimization)

    • LightGBM 通过将连续特征离散化为多个区间(直方图桶),大大减少了数据的存储和计算成本。每个区间代表一个特定的特征值范围,模型仅在这些区间上进行计算,从而加速了训练过程。
  • 支持并行和分布式训练

    • LightGBM 支持数据并行和特征并行,可以在多核 CPU 和多机环境下进行高效训练。这使得它能够处理大规模数据集。

大数据分析案例-基于LightGBM算法构建乳腺癌分类预测模型_lightgbm 医疗-CSDN博客

数据挖掘比赛比较基础的baseline_比赛baseline-CSDN博客

梯度消失的概念,如何解决

梯度消失的原因

梯度消失是指在神经网络的训练过程中,从输出层向输入层传递的误差梯度逐渐变小,以至于到达输入层时已经接近于零。这个问题通常发生在使用了sigmoid或tanh这类激活函数的深度网络中。这些激活函数的导数在其值域的两端都非常小(接近于零),因此在多层网络中连续乘以这些小的导数会导致梯度迅速减小,从而使得网络的前几层学习非常缓慢或几乎不学习,这严重阻碍了模型的训练效率。

解决梯度消失的方法

  1. 改用ReLU及其变体作为激活函数

    • ReLU(Rectified Linear Unit)激活函数在正区间的导数为1,这样可以有效防止梯度消失的问题。其变体如Leaky ReLU或Parametric ReLU (PReLU) 也是不错的选择,它们在负区间提供一个小的非零斜率,保持信息的流动。
  2. 使用批归一化(Batch Normalization)

    • 批归一化通过规范化每一层的输入来缓解内部协变量偏移(每层输入的分布改变),可以帮助改善网络的训练速度,减少梯度消失的问题。
  3. 采用合适的权重初始化策略

    • 选择合适的方法初始化网络权重对预防梯度消失至关重要。例如,He 初始化是为ReLU激活函数专门设计的,可以在训练开始时保持激活和梯度的尺度。
  4. 使用残差网络(ResNet)架构

    • 残差网络通过引入跳过连接(skip connections),允许梯度直接流向更早的层。这样的结构有助于梯度更好地流动,防止在深层网络中消失。
  5. 使用梯度剪辑(Gradient Clipping)

    • 这是一种在训练中控制梯度爆炸问题的技术,但它也可以间接帮助缓解梯度消失,因为它可以帮助保持数值稳定性,尤其是在RNNs中。
  6. 改进的RNN架构,如LSTM和GRU

    • 长短期记忆(LSTM)和门控循环单元(GRU)是特别设计来防止梯度消失问题的RNN变体。它们通过引入门控机制来控制信息的流动,有效避免了传统RNN中梯度消失的问题。

K折交叉验证

数据挖掘比赛比较基础的baseline_比赛baseline-CSDN博客

K折交叉验证找到最佳超参数

K-means的原理以及过程

时间和空间复杂度

K的值怎么确定

K-Means(K-均值)聚类算法理论和实战-CSDN博客

SVM的原理 

  1. 最大化边际:SVM的核心理念是寻找一个决策边界(在二维空间中是一条线,在更高维空间中是一个平面或超平面),这个边界能够最大程度地区分不同类别的数据点。SVM尝试最大化各类数据点到决策边界的最小距离,这个距离被称为“边际”。
  2. 支持向量:决策边界的确切位置由距离它最近的几个训练样本确定,这些样本被称为“支持向量”。SVM模型特别关注这些关键样本。
  3. 核技巧:对于非线性可分的数据,SVM使用所谓的“核技巧”将数据映射到更高维的空间,从而使得数据在新空间中线性可分。常见的核函数包括线性核、多项式核、径向基函数(RBF)核等。

向量机SVM原理理解和实战_svm实战-CSDN博客

降维分析方法

PCA原理及实现过程

主成分分析(Principal Component Analysis)是一种常用的降维技术,通过线性变换将高维数据投影到低维空间,同时尽量保留数据的方差信息。PCA 常用于数据预处理、特征提取和数据可视化。

KPCA降维原理

核主成分分析(Kernel Principal Component Analysis)对于输入空间中的矩阵X,先用一个非线性映射把X中的所有样本映射到一个高维甚至是无穷维的空间(特征空间),使其线性可分,然后在这个高维空间进行PCA降维

T-SNE降维原理

TSNE是另一种常用的数据降维方法。由T和SNE组成,也就是T 分布和随机近邻嵌入 (Stochastic neighbour Embedding)。其主要优势在于高维数据 空间中距离相近的点投 影到低维空间中仍然相近。 T-SNE(TSNE)将数据点之间的相似度转换为概率。原始空间中的 相似度由高斯联合概率 表示,嵌入空间的相似度由“学生T分布”表

葡萄酒品质揭秘:运用PCA和KPCA技术深度解析葡萄酒分类-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/41708.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云服务器在 Web 应用程序中作用

云服务器在Web应用程序中扮演着至关重要的角色,它不仅是现代Web应用程序的基石,还是推动业务发展和提升用户体验的关键技术之一。下面将详细探讨云服务器在Web应用程序中的重要作用及其优势。 首先,云服务器为Web应用程序提供了高度可扩展的…

【postgresql】索引

见的索引类型: B-tree 索引:这是最常用的索引类型,适用于大多数查询。B-tree索引可以高效地处理范围查询。 Hash 索引:适用于等值查询,但不支持范围查询。 GiST 索引:通用搜索树(GiST&#xf…

怀念旧的Windows声音?以下是如何在Windows 11中恢复它们

如果你渴望旧的Windows声音,希望能在Windows 11上再次听到,那你就很幸运了。我们将向你展示如何下载必要的声音包并创建复古的声音方案。 如何获取旧Windows声音的声音包 你需要做的第一件事是下载一个包含旧Windows版本声音的声音包。此外,请确保它包含的每个声音都是WAV…

在 Vue 项目中使用 FullCalendar

1、先安装依赖包,根据自己的需求安装,建议使用cnpm安装,不然会很慢有时候会出现安装不上的情况。 npm i fullcalendar/vue --save npm i fullcalendar/core --save // 在月视图或日视图中操作事件 npm i fullcalendar/daygrid --save // 在…

记录discuz修改用户的主题出售价格

大家好,我是网创有方的站长,今天遇到了需要修改discuz的主题出售价格。特此记录下 方法很简单: 进入用于组-》选择论坛-》批量修改

【shell编程小项目】

目录 一、项目拓扑二、要求三、shell编程 一、项目拓扑 二、要求 环境准备: 准备两个虚拟机,按照环境配置好对应的 IP 地址和对应的主机名和 SSH 密钥登录在 workstation.exam.com 节点实现如下需求: 1、编写 Shell 脚本,要求代码…

0803实操-Windows Server系统管理

Windows Server系统管理 系统管理与基础配置 查看系统信息、更改计算机名称 网络配置 启用网络发现 Windows启用网络发现是指在网络设置中启用一个功能,该功能允许您的计算机在网络上识别和访问其他设备和计算机。具体来说,启用网络发现后&#xff…

Qt5.9.9 关于界面拖动导致QModbusRTU(QModbusTCP没有测试过)离线的问题

问题锁定 参考网友的思路: Qt5.9 Modbus request timeout 0x5异常解决 网友认为是Qt的bug, 我也认同;网友认为可以更新模块, 我也认同, 我也编译了Qt5.15.0的code并成功安装到Qt5.9.9中进行使用,界面拖…

Mybatis原生使用

一、MyBatis初次使用 2.1 环境搭建步骤 MyBatis 的 API : https://mybatis.org/mybatis-3/zh/getting-started.html 1.引入依赖包 2.准备核心配置件 db.properties drivercom.mysql.cj.jdbc.Driver urljdbc:mysql://123.57.206.19:3306/demo?useUnicodetrue&am…

如何选择最佳的照片和视频恢复软件

您是否意外从硬盘或 USB 卡中删除了照片或视频?最好的视频和照片恢复软件可以帮到您!如果您一直在寻找最好的照片恢复软件,那么您来对地方了。本文将分享一些帮助您找到最佳视频恢复软件的提示。 重要提示:事实:媒体文…

【LabVIEW学习篇 - 3】:程序结构——顺序结构、for循环、while循环

文章目录 顺序结构案例一案例二 for循环while循环 顺序结构 LabVIEW中的顺序结构是一种常用的控制结构,用于按顺序执行程序的不同部分。顺序结构在程序中按照从左到右的顺序依次执行各个子结构,类似于传统的文本编程语言中的顺序执行。 案例一 案例一…

JAVA的线性表数据结构的超详解

目录 顺序表的顺序存储结构 1.数组 2.顺序表 顺序表的声明,存储操作以及效率分析 1.泛型类 2.顺序表的插入操作 3. 顺序表的删除操作 4.顺序表查询操作 5.顺序表的应用 线性表的链式存储结构 单链表的基本操作 顺序表的顺序存储结构 数组是实现顺序存储…

随手记录: Ubuntu NVIDIA显卡驱动安装后 屏幕亮度无法调节 无法连接外显示器等问题

背景 一句话:简单记录帮身边人装系统发现 GPU和外接显示器的无法连接,同时亮度无法调节等新问题 设备型号: 联想笔记本:ThinkBook 16p Gen2CPU:AMD Ryzen 7 5800HGPU:RTX 3060 问题描述及流程&#xff…

类继承-多继承虚继承

#include<iostream> using namespace std; class A1 { public:int a 10;}; class A2 { public:int b 20; }; class B :public A1, public A2 { public:int c 30; }; int main(){B b;cout << b.a << b.b << b.c << endl;return 0; } 如果基类…

STM32-HAL-SDIO-(sd卡的识别,整理后的版本)

1STM32Cube操作 1-1配置时钟 1-2配置调试端口 1-3配置uart 1-4配置SDIO 选择数据传输引脚个数 需改配置&#xff08;图中改了两处&#xff0c;选中的和最后一个&#xff09; 1-5打开DMA 传输方向改为图中的&#xff08;由内转向外设&#xff09;在改图中的一次读写的大小 1-…

图像处理调试软件推荐

对于图像处理的调试&#xff0c;使用具有图形用户界面&#xff08;GUI&#xff09;且支持实时调整和预览的图像处理软件&#xff0c;可以大大提高工作效率。以下是几款常用且功能强大的图像处理调试软件推荐&#xff1a; ImageJ/FijiMATLABOpenCV with GUI LibrariesNI Vision …

Java中关于构造代码块和静态代码块的解析

构造代码块 特点&#xff1a;优先于构造方法执行,每new一次,就会执行一次 public class Person {public Person(){System.out.println("我是无参构造方法");}{System.out.println("我是构造代码块"); //构造代码块} }public class Test {public stati…

【推荐图书】深入浅出Spring Boot 3.x

推荐原因 这部SpringBoot3.x经典之作&#xff0c;时隔六年迎来重磅升级&#xff01; 适合java开发相关读者 购买链接 商品链接&#xff1a;https://item.jd.com/14600442.html 介绍 书名&#xff1a;深入浅出Spring Boot 3.x ISBN&#xff1a;978-7-115-63282-1/ 作者&…

「ETL趋势」分区支持PostgreSQL、Greenplum、Gauss200, 定时任务支持Kettle

FineDataLink作为一款市场上的顶尖ETL工具&#xff0c;集实时数据同步、ELT/ETL数据处理、数据服务和系统管理于一体的数据集成工具&#xff0c;进行了新的维护迭代。本文把FDL4.1.9最新功能作了介绍&#xff0c;方便大家对比&#xff1a;&#xff08;产品更新详情&#xff1a;…

【国产开源可视化引擎Meta2d.js】钢笔

钢笔 钢笔是和其他众多绘图工具&#xff08;Photoshop、Sketch、Illustrator&#xff09;中一致的钢笔工具&#xff0c;能够很方便的在线绘制各种小图标 在线体验&#xff1a; 乐吾乐2D可视化 示例&#xff1a; // 开始绘画&#xff1a;curve。除了curve&#xff0c;还有poly…