基于循环神经网络的一维信号降噪方法(简单版本,Python)

代码非常简单。

import torch 
import torch.nn as nn
from torch.autograd import Variable
from scipy.io.wavfile import write
#need install pydub module
#pip install pydub
import numpy as np
import pydub 
from scipy import signal
import IPython
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import Axes3D
# For running on GPU
#device = torch.device("cuda")# choose your device
device = torch.device("cpu")
a = torch.rand(5, 5, device=device)# change by either using the device argument
a = a.to(device)# or by .to()

Make data

fs = 512
x = np.linspace(0, 20*np.pi * (1-1/(10*fs)), fs*10)
y_sin = 0.5*np.sin(x)
plt.plot(x, y_sin)
plt.xlabel('Angle [rad]')
plt.ylabel('sin(x)')
plt.axis('tight')
plt.show()

y_triangle = 0.5*signal.sawtooth(x, 0.5)
plt.plot(x, y_triangle)
plt.xlabel('Phase [rad]')
plt.ylabel('triangle(x)')
plt.axis('tight')
plt.show()

y_saw = 0.5*signal.sawtooth(x, 1)plt.plot(x, y_saw)plt.xlabel('Phase [rad]')plt.ylabel('sawtooth(x)')plt.axis('tight')plt.show()

Add Gaussian Noise

Add noise


# Add guassian noise
y_sin_n = y_sin + 0.1*np.random.normal(size=len(x))
y_triangle_n = y_triangle + 0.1*np.random.normal(size=len(x))
y_saw_n = y_saw + 0.1*np.random.normal(size=len(x))plt.plot(x, y_sin_n)
plt.xlabel('Angle [rad]')
plt.ylabel('sin(x) + noise')
plt.axis('tight')
plt.show()

plt.plot(x, y_triangle_n)
plt.xlabel('Phase [rad]')
plt.ylabel('triangle(x) + noise')
plt.axis('tight')
plt.show()

plt.plot(x, y_saw_n)
plt.xlabel('Phase [rad]')
plt.ylabel('sawtooth(x) + noise')
plt.axis('tight')
plt.show()

Creating Dataset

def give_part_of_data(x, y, n_samples=10000, sample_size=100) :data_inp = np.zeros((n_samples, sample_size))data_out = np.zeros((n_samples, sample_size))for i in range(n_samples):random_offset = np.random.randint(0, len(x) - sample_size)sample_inp = x[random_offset:random_offset+sample_size]sample_out = y[random_offset:random_offset+sample_size]data_inp[i, :] = sample_inpdata_out[i, :] = sample_outreturn data_inp, data_out
# Train, Validationa, and Test
sin_train_in, sin_train_out = give_part_of_data(y_sin_n[0:int(7/10 * len(x))], y_sin[0:int(7/10 * len(x))], 2000, int(len(x)/6))
tri_train_in, tri_train_out = give_part_of_data(y_triangle_n[0:int(7/10 * len(x))], y_triangle[0:int(7/10 * len(x))], 2000, int(len(x)/6))
saw_train_in, saw_train_out = give_part_of_data(y_saw_n[0:int(7/10 * len(x))], y_saw[0:int(7/10 * len(x))], 2000, int(len(x)/6))sin_val_in, sin_val_out = y_sin_n[int(7/10 * len(x)):int(8/10 * len(x))], y_sin[int(7/10 * len(x)):int(8/10 * len(x))]
tri_val_in, tri_val_out = y_triangle_n[int(7/10 * len(x)):int(8/10 * len(x))], y_triangle[int(7/10 * len(x)):int(8/10 * len(x))]
saw_val_in, saw_val_out = y_saw_n[int(7/10 * len(x)):int(8/10 * len(x))], y_saw[int(7/10 * len(x)):int(8/10 * len(x))]sin_test_in, sin_test_out = y_sin_n[int(8/10 * len(x)):int(10/10 * len(x))], y_sin[int(8/10 * len(x)):int(10/10 * len(x))]
tri_test_in, tri_test_out = y_triangle_n[int(8/10 * len(x)):int(10/10 * len(x))], y_triangle[int(8/10 * len(x)):int(10/10 * len(x))]
saw_test_in, saw_test_out = y_saw_n[int(8/10 * len(x)):int(10/10 * len(x))], y_saw[int(8/10 * len(x)):int(10/10 * len(x))]
plt.plot(range(853), sin_train_in[3])
plt.plot(range(853), sin_train_out[3])plt.xlabel('Phase [rad]')
plt.ylabel('sin(x) + noise')
plt.axis('tight')
plt.show()

RNN + Sin

# RNN model
input_dim = 1
hidden_size_1 = 60
hidden_size_2 = 60
output_size = 1class CustomRNN(nn.Module):def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):super(CustomRNN, self).__init__()self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size_1, batch_first=True)self.linear = nn.Linear(hidden_size_1, hidden_size_2, )self.act = nn.Tanh()self.linear = nn.Linear(hidden_size_2, output_size, )self.act = nn.Tanh()def forward(self, x):pred, hidden = self.rnn(x, None)pred = self.act(self.linear(pred)).view(pred.data.shape[0], -1, 1)return predmodel = CustomRNN(input_dim, hidden_size_1, hidden_size_2, output_size)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters())
loss_func = nn.MSELoss()lr = 1e-2for t in range(1000):inp = torch.Tensor(sin_train_in[..., np.newaxis] )inp.requires_grad = Trueinp = inp.to(device)out = torch.Tensor(sin_train_out[..., np.newaxis])out = out.to(device)pred = model(inp)optimizer.zero_grad()loss = loss_func(pred, out)if t%20==0:print(t, loss.data.item())lr = lr / 1.0001optimizer.param_groups[0]['lr'] = lrloss.backward()optimizer.step()
test_in = sin_test_in
inp = torch.Tensor(test_in[np.newaxis, ... , np.newaxis] )
inp = inp.to(device)
pred = model(inp).cpu().detach().numpy()
plt.plot(range(len(sin_test_in)), test_in)
plt.plot(range(len(sin_test_in)), pred[0, :,0])plt.showorginal_SNR = np.sum(np.abs(sin_test_out)**2) / np.sum(np.abs(sin_test_in - sin_test_out)**2)
orginal_SNR_db = 10*np.log(orginal_SNR)/np.log(10)
print('Original SNR : ', orginal_SNR)
print('Original SNR DB : ', orginal_SNR_db)network_SNR = np.sum(np.abs(sin_test_out)**2) / np.sum(np.abs(pred[0, :,0] - sin_test_out)**2)
network_SNR_db = 10*np.log(network_SNR)/np.log(10)
print('Network SNR : ', network_SNR)
print('Network SNR DB : ', network_SNR_db)
Original SNR :  12.951857235597608
Original SNR DB :  11.123320486750668
Network SNR :  107.29848229242438
Network SNR DB :  20.305935790331755

RNN + Triangular

# RNN model
input_dim = 1
hidden_size_1 = 60
hidden_size_2 = 60
output_size = 1class CustomRNN(nn.Module):def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):super(CustomRNN, self).__init__()self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size_1, batch_first=True)self.linear = nn.Linear(hidden_size_1, hidden_size_2, )self.act = nn.Tanh()self.linear = nn.Linear(hidden_size_2, output_size, )self.act = nn.Tanh()def forward(self, x):pred, hidden = self.rnn(x, None)pred = self.act(self.linear(pred)).view(pred.data.shape[0], -1, 1)return predmodel = CustomRNN(input_dim, hidden_size_1, hidden_size_2, output_size)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters())
loss_func = nn.MSELoss()lr = 1e-2for t in range(1000):inp = torch.Tensor(tri_train_in[..., np.newaxis] )inp.requires_grad = Trueinp = inp.to(device)out = torch.Tensor(tri_train_out[..., np.newaxis])out = out.to(device)pred = model(inp)optimizer.zero_grad()loss = loss_func(pred, out)if t%20==0:print(t, loss.data.item())lr = lr / 1.0001optimizer.param_groups[0]['lr'] = lrloss.backward()optimizer.step()
test_in = tri_test_in
inp = torch.Tensor(test_in[np.newaxis, ... , np.newaxis] )
inp = inp.to(device)
pred = model(inp).cpu().detach().numpy()
plt.plot(range(len(tri_test_in)), test_in)
plt.plot(range(len(tri_test_in)), pred[0, :,0])plt.showorginal_SNR = np.sum(np.abs(tri_test_out)**2) / np.sum(np.abs(tri_test_in - tri_test_out)**2)
orginal_SNR_db = 10*np.log(orginal_SNR)/np.log(10)
print('Original SNR : ', orginal_SNR)
print('Original SNR DB : ', orginal_SNR_db)network_SNR = np.sum(np.abs(tri_test_out)**2) / np.sum(np.abs(pred[0, :,0] - tri_test_out)**2)
network_SNR_db = 10*np.log(network_SNR)/np.log(10)
print('Network SNR : ', network_SNR)
print('Network SNR DB : ', network_SNR_db)
Original SNR :  9.06282337035853
Original SNR DB :  9.572635159053185
Network SNR :  46.622532666082044
Network SNR DB :  16.685958619136

RNN + Sawtooth

# RNN model
input_dim = 1
hidden_size_1 = 60
hidden_size_2 = 60
output_size = 1class CustomRNN(nn.Module):def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):super(CustomRNN, self).__init__()self.rnn = nn.RNN(input_size=input_size, hidden_size=hidden_size_1, batch_first=True)self.linear = nn.Linear(hidden_size_1, hidden_size_2, )self.act = nn.Tanh()self.linear = nn.Linear(hidden_size_2, output_size, )self.act = nn.Tanh()def forward(self, x):pred, hidden = self.rnn(x, None)pred = self.act(self.linear(pred)).view(pred.data.shape[0], -1, 1)return predmodel = CustomRNN(input_dim, hidden_size_1, hidden_size_2, output_size)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters())
loss_func = nn.MSELoss()lr = 1e-2for t in range(1000):inp = torch.Tensor(tri_train_in[..., np.newaxis] )inp.requires_grad = Trueinp = inp.to(device)out = torch.Tensor(tri_train_out[..., np.newaxis])out = out.to(device)pred = model(inp)optimizer.zero_grad()loss = loss_func(pred, out)if t%20==0:print(t, loss.data.item())lr = lr / 1.0001optimizer.param_groups[0]['lr'] = lrloss.backward()optimizer.step()
test_in = saw_test_in
inp = torch.Tensor(test_in[np.newaxis, ... , np.newaxis] )
inp = inp.to(device)
pred = model(inp).cpu().detach().numpy()
plt.plot(range(len(saw_test_in)), test_in)
plt.plot(range(len(saw_test_in)), pred[0, :,0])plt.showorginal_SNR = np.sum(np.abs(saw_test_out)**2) / np.sum(np.abs(saw_test_in - saw_test_out)**2)
orginal_SNR_db = 10*np.log(orginal_SNR)/np.log(10)
print('Original SNR : ', orginal_SNR)
print('Original SNR DB : ', orginal_SNR_db)network_SNR = np.sum(np.abs(saw_test_out)**2) / np.sum(np.abs(pred[0, :,0] - saw_test_out)**2)
network_SNR_db = 10*np.log(network_SNR)/np.log(10)
print('Network SNR : ', network_SNR)
print('Network SNR DB : ', network_SNR_db)
Original SNR :  8.918716305325825
Original SNR DB :  9.50302349708762
Network SNR :  26.97065260659425
Network SNR DB :  14.308914551667852

知乎学术咨询:
https://www.zhihu.com/consult/people/792359672131756032?isMe=1

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/39861.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言学习记录(十二)——指针与数组及字符串

文章目录 前言一、指针和数组二、指针和二维数组**行指针(数组指针)** 三、 字符指针和字符串四、指针数组 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、指针和数组 在C语言中 &#xff0…

AI降重,不再难:降AI率的实用技巧大揭秘

如何有效降低AIGC论文的重复率,也就是我们说的aigc如何降重?AIGC疑似度过高确实是个比较愁人的问题。如果你用AI帮忙写了论文,就一定要在交稿之前做一下AIGC降重的检查。一般来说,如果论文的AIGC超过30%,很可能会被判定…

CAS操作

CAS 全称:Compare and swap,能够比较和交换某个寄存器中的值和内存中的值,看是否相等,如果相等,则把另外一个寄存器中的值和内存进行交换. (这是一个伪代码,所以这里的&address实际上是想要表示取出address中的值) 那么我们可以看到,CAS就是这样一个简单的交换操作,那么…

基于SpringBoot房屋租赁管理系统设计和实现(源码+LW+调试文档+讲解等)

💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 Java精品实战案例《1000套》 2025-2026年最值得选择的Java毕业设计选题大全&#xff…

新火种AI|国产大模型展开决战,是资本游戏还是技术革命?

作者:一号 编辑:美美 资本角逐与技术革新,国产大模型的双线战场已然开启。 随着人工智能技术的不断进步,国产大模型正迅速成为行业关注的焦点。在这个由数据驱动的时代,资本的注入和技术创新的加速,让国…

Python28-6 随机森林

随机森林算法详细介绍 1. 理论背景 随机森林(Random Forest)是一种由Leo Breiman和Adele Cutler在2001年提出的集成学习方法。它结合了多个决策树的预测结果,以提高模型的准确性和鲁棒性。 2. 算法细节 随机森林的构建过程可以分为以下几…

Qt——升级系列(Level Eight):界面优化

目录 QSS 背景介绍 基本语法 QSS设置方式 指定控件样式设置 全局样式设置 从文件加载样式表 使用Qt Designer 编辑样式 选择器 选择器概况 子控件选择器 伪类选择器 样式属性 盒模型 控件样式示例 按钮 复选框、单选框 输入框 列表 菜单栏 登录界面 绘图 基本概念 绘制各种形…

[Go 微服务] Kratos 使用的简单总结

文章目录 1.Kratos 简介2.传输协议3.日志4.错误处理5.配置管理6.wire 1.Kratos 简介 Kratos并不绑定于特定的基础设施,不限定于某种注册中心,或数据库ORM等,所以您可以十分轻松地将任意库集成进项目里,与Kratos共同运作。 API -&…

Linux内网端口转公网端口映射

由于服务商做安全演练,把原先服务器内网的端口映射到外网端口全都关闭了,每次维护服务器特别麻烦,像数据库查询如果用原生的mysql 去连接,查询返回的结果乱了,非常不方便。 查了服务还是可以正常访问部分外网的&#x…

抖音外卖服务商入驻流程及费用分别是什么?入驻官方平台的难度大吗?

随着抖音关于新增《【到家外卖】内容服务商开放准入公告》的意见征集通知(以下简称“通知”)的发布,抖音外卖服务商入驻流程及费用逐渐成为众多创业者所关注和热议的话题。不过,就当前的讨论情况来看,这个话题似乎没有…

软件测试中安全测试包含内容及安全测试怎么测

一、软件测试安全测试包含哪些 1. 漏洞扫描 漏洞扫描是软件测试安全测试的基础,它用于检测应用程序和系统中存在的已知漏洞。安全测试工具如AppScan、OWASP ZAP和Nessus等可以对应用程序进行自动化扫描,发现可能存在的漏洞,如跨站点脚本&am…

7.2、指针变量的定义和使用

代码 #include <iostream> using namespace std; #include <string>int main() {//定义指针int a 10;//指针定义语法&#xff1a;数据类型 * 指针变量名int * p;//让指针记录变量a的地址p &a;cout << "a的地址为&#xff1a;" << &am…

MySQL之应用层优化(二)

应用层优化 Web服务器问题 寻找最优并发度 每个Web服务器都有一个最佳并发度——就是说&#xff0c;让进程处理请求尽可能快&#xff0c;并且不超过系统负载的最优的并发连接数。这就是前面说的最大系统容量。进行一个简单的测量和建模&#xff0c;或者只是反复试验&#xf…

nginx SSI(Server Side Include)服务端包含 合并拼装静态内容

一、什么是SSI 在被传送给浏览器之前&#xff0c;服务器会对 HTML 文档进行完全地读取、分析以及修改&#xff0c;使用SSI指令将文本、图片或代码信息包含到网页中。对于整个页面可以拆分成多个模块&#xff0c;通过SSI指令将几个模块拼接成一个完整的页面&#xff0c;当有内容…

【数据库原理】课程笔记

数据库原理 一、数据库系统基础 数据模型的类型 概念数据模型&#xff1a; 概念数据模型也称概念模型或信息模型,是对现实世界中问题域内事务(特性)的描述,是以用户观点实现世界的模型(图形表示)。主要用于描述事物的概念化结构,使数据库的设计人员在设计初期,避开计算机系统及…

ATA-L2水声功率放大器驱动水声换能器的测试研究

随着水声通信技术的发展&#xff0c;水下通信设备也开始逐步走向实用化&#xff0c;为了满足其实际的使用要求&#xff0c;功率放大器的设计需要具有高效率的特性&#xff0c;并能在水下长时间连续可靠的工作。 压电陶瓷换能器主要负责电信号与声信号之间的转换&#xff0c;换能…

应用密码学—(扩展)欧几里得、DES、RSA、SHA-1算法

1. 欧几里得算法 1.1 分析算法的实现原理 欧几里德&#xff08;Euclid&#xff09;算法&#xff0c;也既常说的“辗转相除法”&#xff0c;公式为gcd(m, n) { return gcd(n, m%n); }&#xff0c;对于任意两个正整数m、n&#xff0c;每次求的一个数字r m % n&#xff0c;然后把…

教育场景中的自动化分拣系统!基于大象机器人UltraArm P340机械臂和传送带的实现

引言 今天我们将展示一个高度自动化的模拟场景&#xff0c;展示多个机械臂与传送带协同工作的高效分拣系统。在这个场景中&#xff0c;机械臂通过视觉识别技术对物体进行分类&#xff0c;并通过精确的机械操作将它们放置在指定的位置。这一系统不仅提高了分拣的速度和准确性&am…

PTrade怎么获取KDJ随机指标?想做量化策略怎么申请PTrade量化软件?

get_KDJ - 随机指标 get_KDJ(high, low, close, n9, m13, m23) 使用场景 该函数仅在回测、交易模块可用 接口说明 获取随机指标KDJ指标的计算结果 PTrade是恒生公司开发的一款专业量化软件&#xff0c;部分合作券商可提供&#xff0c;↑↑↑&#xff01; 参数 high&…

什么是分库分表?它有哪些实现类型?

假如你正在使用关系型数据库开发一款健康类系统。业务发展很好&#xff0c;系统有很多活跃的新老用户&#xff0c;这些用户会和平台的医生团队进行交互&#xff0c;每天可能会生成数万甚至数十万级别的业务数据。这样的话&#xff0c;随着数据量越来越大&#xff0c;系统中的某…