TransMIL:基于Transformer的多实例学习

MIL是弱监督分类问题的有力工具。然而,目前的MIL方法通常基于iid假设,忽略了不同实例之间的相关性。为了解决这个问题,作者提出了一个新的框架,称为相关性MIL,并提供了收敛性的证明。基于此框架,还设计了一个基于Transformer的MIL (TransMIL)。TransMIL可以有效地处理不平衡/平衡和二元/多分类,具有良好的可视化和可解释性。在CAMELYON16数据集上,二元肿瘤分类的测试AUC高达93.09%。在TCGANSCLC和TCGA-RCC数据集上,癌症亚型分类的AUC分别高达96.03%和98.82%。

来自:TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

目录

  • 背景概述
  • 方法
    • 如何应用Transformer到相关性MIL

背景概述

WSI将活检切片上的组织转换成完全保留原始组织结构的十亿像素图像。然而,WSI中基于深度学习的活检诊断由于像素空间庞大导致缺乏像素级标注。为了解决这个问题,通常采用MIL将诊断分析作为一个弱监督学习问题。

在基于深度学习的MIL中,一个简单的想法是对CNN提取的instance特征嵌入进行pooling操作。Ilse等人提出了一种基于注意力的聚合算子,通过可训练的注意力为每个实例提供额外的贡献信息。此外,Li将非局部注意力引入了MIL问题。通过计算得分最高的实例与其他实例之间的相似度,赋予每个实例不同的注意力权重,从而得到可解释的注意力图。

然而,所有这些方法都基于这样的假设:每个bag中的所有实例都是独立且同分布的。虽然在许多任务中取得了一些改进,但在许多情况下,这种假设并不完全有效。实际上,在做出诊断决定时,病理学家通常会同时考虑单个区域周围的环境信息和不同区域之间的相关信息。因此,在MIL诊断中考虑不同instance之间的相关性是可取的。

目前,Transformer由于具有较强的描述序列中不同token之间的相关性以及对远距离信息建模的能力,被广泛应用于视觉任务中。如图1所示,Transformer采用自注意力机制,可以关注序列内每个token之间的两两相关性。然而,传统的Transformer受到其计算复杂性的限制,只能处理较短的序列(例如,小于1000或512)。因此,它不适合WSI等大尺寸图像。
fig1

  • 图1:决策过程图示。MIL注意力机制:遵循iid假设。自注意机制:属于相关性MIL。

方法

以二元MIL为例,我们想要预测target value Y i ∈ { 0 , 1 } Y_{i}\in\left\{0,1\right\} Yi{0,1},给定一个bag X i X_{i} Xi(instance为 { x i , 1 , x i , 2 , . . . , x i , n } \left\{x_{i,1},x_{i,2},...,x_{i,n}\right\} {xi,1,xi,2,...,xi,n}),其中 i = 1 , . . , b i=1,..,b i=1,..,b,实例级标签是未知的: { y i , 1 , y i , 2 , . . . , y i , n } \left\{y_{i,1},y_{i,2},...,y_{i,n}\right\} {yi,1,yi,2,...,yi,n},bag标签是已知的,并且与实例标签有联系:
eq1
b b b是袋的总数, n n n是第 i i i个袋里的实例数, n n n的个数可以根据不同的袋而变化。

关于相关性MIL的优势,文中给出了证明,但是在此略过。主要意思是:

  • 考虑实例相关性可以具有更小的信息熵,从而减少不确定性,为MIL带来更多有效信息。TransMIL与过去方法的主要区别如图2

fig2

  • 图2:不同pooling矩阵 P P P的差异。假设从a中的WSI采样5个instance, P ∈ R 5 × 5 P\in\R^{5\times 5} PR5×5是对应的pooling矩阵,其中对角线内的值表示instance自身的注意力权重,其余值表示不同instance之间的相关性。b,c,d 都忽略了相关信息,因此 P P P是对角矩阵。在b中,第一个实例是由Max-pooling算子选择的,所以在对角线位置只有一个非零值。在c中,由于Mean-pooling运算符,对角线内的所有值都是相同的。在d中,由于引入的是bypass注意力,对角线内的值可能会发生变化。但其余位置为0(独立同分布假设)。e服从相关性假设,因此在非对角线位置存在非零值,表示不同实例之间存在相关性。

对于MIL的pooling,这里有一个通用的三步法:
ag1

  • 形态信息:morphological,空间信息:spatial

如何应用Transformer到相关性MIL

Transformer使用自注意力机制对序列中所有令牌之间的交互进行建模,位置信息的添加进一步增加了顺序信息。因此,将Transformer引入相关性MIL问题是合理的,其中函数 h h h对实例之间的空间信息进行编码,pooling矩阵 P P P使用自注意力进行信息聚合。为了说明这一点,进一步给出一个正式的定义。

给定一个bag集合 { X 1 , . . . , X b } \left\{X_{1},...,X_{b}\right\} {X1,...,Xb},每个bag对应一个标签 Y i Y_{i} Yi。目标是学习映射: X → T → Y \mathbb{X} \rightarrow \mathbb{T}\rightarrow \mathbb{Y} XTY,即从bag空间,到Transformer空间,再到标签空间。

为了更好地描述 X → T \mathbb{X} \rightarrow \mathbb{T} XT的映射,作者设计了一个包含两个Transformer层和一个位置编码层的TPT模块,其中Transformer层用于聚合形态信息,PPEG (Pyramid position encoding Generator)用于编码空间信息。所提出的基于MIL (TransMIL)的Transformer的概述如图3所示。

fig3

  • 图3:每个WSI被裁剪成patch(背景被丢弃),并被ResNet50嵌入到特征向量中。然后用TPT模块对序列进行处理:1)序列的平方;2)序列相关性建模;3)条件位置编码与局部信息融合;4)深度特征聚合;5) T → Y \mathbb{T}\rightarrow \mathbb{Y} TY的映射。

序列来自每个WSI中的特征嵌入。TPT模块的处理步骤如算法2所示,其中MSA表示多头自注意力,MLP表示多层感知机,LN表示 Layer Norm。
ag2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/39560.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3.js - 反射率(reflectivity) 、折射率(ior)

没啥太大的感觉 反射率 reflectivity 概念 反射率:指的是,材质表面反射光线的能力反射率,用于控制材质对环境光,或光源的反射程度反射率越高,材质表面反射的光线越多,看起来就越光亮使用 适用于&#xff0…

【PYG】Cora数据集分类任务计算损失,cross_entropy为什么不能直接替换成mse_loss

cross_entropy计算误差方式,输入向量z为[1,2,3],预测y为[1],选择数为2,计算出一大坨e的式子为3.405,再用-23.405计算得到1.405MSE计算误差方式,输入z为[1,2,3],预测向量应该是[1,0,0]&#xff0…

Dify入门指南

一.Dify介绍 生成式 AI 应用创新引擎,开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用,比 LangChain 更易用。一个平台,接入全球大型语言模型。不同…

德璞资本:桥水公司如何利用AI实现投资决策的精准提升?

摘要: 在金融科技的浪潮中,桥水公司推出了一只依靠机器学习决策的创新基金,吸引了大量投资者的关注。本文将深入探讨该基金的背景、AI技术的应用、对桥水公司转型的影响,以及未来发展的前景。 新基金背景:桥水公司的创…

2024年7月2日 (周二) 叶子游戏新闻

老板键工具来唤去: 它可以为常用程序自定义快捷键,实现一键唤起、一键隐藏的 Windows 工具,并且支持窗口动态绑定快捷键(无需设置自动实现)。 卸载工具 HiBitUninstaller: Windows上的软件卸载工具 经典名作30周年新篇《恐怖惊魂夜…

MyBatis入门案例

实施前的准备工作: 1.准备数据库表2.创建一个新的springboot工程,选择引入对应的起步依赖(mybatis、mysql驱动、lombok)3.在application.properties文件中引入数据库连接信息4.创建对应的实体类Emp(实体类属性采用驼峰…

补浏览器环境

一,导言 // global是node中的关键字(全局变量),在node中调用其中的元素时,可以直接引用,不用加global前缀,和浏览器中的window类似;在浏览器中可能会使用window前缀:win…

校园水质信息化监管系统——水质监管物联网系统

随着物联网技术的发展越来越成熟,它不断地与人们的日常生活和工作深入融合,推动着社会的进步。其中物联网系统集成在高校实践课程中可以应用到许多项目,如环境气象检测、花卉种植信息化监管、水质信息化监管、校园设施物联网信息化改造、停车…

springboot项目jar包修改数据库配置运行时异常

一、背景 我将软件成功打好jar包了,到部署的时候发现jar包中数据库配置写的有问题,不想再重新打包了,打算直接修改配置文件,结果修改配置后,再通过java -jar运行时就报错了。 二、问题描述 本地项目是springBoot项目…

【计算机图形学 | 基于MFC三维图形开发】期末考试知识点汇总(上)

文章目录 视频教程第一章 计算机图形学概述计算机图形学的定义计算机图形学的应用计算机图形学 vs 图像处理 vs模式识别图形显示器的发展及工作原理理解三维渲染管线 第二章 基本图元的扫描转换扫描转换直线的扫描转换DDA算法Bresenham算法中点画线算法圆的扫描转换中点画圆算法…

【Godot4.2】Godot中的贝塞尔曲线

概述 通过指定平面上的多个点,然后顺次连接,我们可以得到折线段,如果闭合图形,就可以获得多边形。通过向量旋转我们可以获得圆等特殊图形。 但是对于任意曲线,我们无法使用简单的方式来获取其顶点,好在计…

mac上使用finder时候,显示隐藏的文件或者文件夹

默认在finder中是不显示隐藏的文件和文件夹的,但是想创建.gitignore文件,并向里面写入内容,即便是打开xcode也是不显示这几个隐藏文件的,那有什么办法呢? 使用快捷键: 使用finder打开包含隐藏文件的文件夹…

Linux如何安装openjdk1.8

文章目录 Centosyum安装jdk和JRE配置全局环境变量验证ubuntu使用APT(适用于Ubuntu 16.04及以上版本)使用PPA(可选,适用于需要特定版本或旧版Ubuntu)Centos yum安装jdk和JRE yum install java-1.8.0-openjdk-devel.x86_64 安装后的目录 配置全局环境变量 vim /etc/pr…

ISP IC/FPGA设计-第一部分-SC130GS摄像头分析-IIC通信(1)

1.摄像头模组 SC130GS通过一个引脚(SPI_I2C_MODE)选择使用IIC或SPI配置接口,通过查看摄像头模组的原理图,可知是使用IIC接口; 通过手册可知IIC设备地址通过一个引脚控制,查看摄像头模组的原理图&#xff…

中日区块链“大比拼”!中国蚂蚁加大区块链押注资本!日本索尼进军加密货币市场!

科技巨头在区块链和加密货币领域的动作越来越频繁。近期,中国金融科技巨头蚂蚁集团进一步加大了在区块链业务上的投资,而日本电子科技巨头索尼集团则正式进军加密货币交易领域。这些举措反映了两国对于区块链和加密资产领域的不同态度和布局。 蚂蚁集团加…

disql使用

进入bin目录:cd /opt/dmdbms/bin 启动disql:./disql,然后输入用户名、密码 sh文件直接使用disql: 临时添加路径到PATH环境变量:在当前会话中临时使用disql命令而无需每次都写完整路径,可以在执行脚本之前…

973. 最接近原点的 K 个点-k数组维护+二分查找

973. 最接近原点的 K 个点-k数组维护二分查找 给定一个数组 points ,其中 points[i] [xi, yi] 表示 X-Y 平面上的一个点,并且是一个整数 k ,返回离原点 (0,0) 最近的 k 个点。 这里,平面上两点之间的距离是 欧几里德距离&#…

初学嵌入式是弄linux还是单片机?

在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「单片机的资料从专业入门到高级教程」, 点个关注在评论区回复“666”之后私信回复“666”,全部无偿共享给大家!!!1、先入门了51先学了89c52…

leetcode每日一练:链表OJ题

链表经典算法OJ题 1.1 移除链表元素 题目要求: 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示例 1: 输入:head [1,2,6,3,4,5,6], val 6 输出&a…

模电-二极管及其应用51单片机LED点亮前置工作!

今日小记 2024-7-2,星期二,16:32,天气:晴,心情:晴。持续了两个星期的梅雨天终于暂时过去啦,迎来了久违的阳光,虽然没有雨天凉快,但是能看到太阳也是开心哒,心…