基于布雷格曼偏差校正技术的全变分一维时间序列信号降噪方法(MATLAB R2018A)

信号降噪是信号处理的重要步骤之一,目的是提高所获得信号数据的质量,以达到更高的定性和定量分析精度。信号降噪能提升信号处理其他环节的性能和人们对信息识别的准确率,给信号处理工作提供更可靠的保证。信号降噪的难点是降低噪声的同时也会破坏原始信号中一些有效的细节信息,如峰或边缘。在分析信号中,谱峰包含着重要的物理或化学性质。为了降低信号中的噪声,通常需要对信号进行平滑处理,尤其对于导数谱分析方法,信号平滑是必不可少的环节,一旦谱峰被平滑掉,在后续分析过程中很难再恢复,从而影响分析结果。

时间域降噪直接对信号本身进行处理,包括滑动均值法、Savitzky-Golay 方法、正则化方法、中值滤波以及基于偏微分方程的方法等。滑动均值法是用滑动窗口内所有点的平均值替换中心点来实现平滑。Savitzky-Golay 方法是滑动均值法的推广,它通过一个低阶多项式来拟合整个窗口内的数据。作为 Savitzky-Golay 方法的改进,一种基于惩罚最小二乘的正则化方法被提出。中值滤波是一种非线性滤波方法,它是将邻域内所有点按强度排序,然后用中间值代替邻域中心点来实现滤波。邻域窗口的大小和形状对降噪效果有着很大的影响。基于偏微分方程的方法是将降噪过程看作物理学中的热扩散,通过求解热扩散方程得到最终的降噪结果。

变换域降噪方法是将信号从时间域变换到频域,然后处理变换后的系数,最终通过逆变换获得降噪后的信号。长期以来,傅里叶变换是变换域降噪的主要手段,对于平稳信号有着不错的效果,但在实际应用中,大多数信号都是非平稳的,这给傅里叶变换降噪带来了困难。随着小波理论的不断发展,小波方法逐渐被应用于信号降噪领域。Mallat 提出了信号奇异性检测的理论,并利用小波变换模极大值的方法进行信号降噪;Donoho提出了基于非线性小波变换阈值的信号降噪方法。但是,该方法会在信号不连续处产生伪吉布斯现象,于是在阈值法的基础上,一种改进的平移不变量小波降噪方法被提出。此外,多小波与小波包理论的研究也为变换域降噪带来了新的方法。

鉴于此,采用基于布雷格曼偏差校正技术的全变分一维时间序列信号降噪方法,运行环境为MATLAB R2018A。


function [u, iter] = denoise_1D(g, mu, delta)
l.
%
% Input:    g       -   noisy 1D signal
%           mu      -   regularization parameter
%           delta   -   noise level. needed for disc. principle stop crit
%                       If noise level is not set, use a variance estimate
% Output:   u       -   solution of the ROF model%% check inputs, potentially assign discrepancy principle threshold
fprintf('Bregman iterative denoising started\n');assert(size(g,1) == 1 || size(g,2) == 1, 'input signal must be 1D')
g = reshape(g,[],1);
N = size(g,1);% if no noise level is set, use variance estimate
if nargin == 2delta = sqrt((N-1)*var(g)); fprintf('no noise level provided, estimating discrepancy principle threshold to sqrt((N-1)*variance).\n');fprintf('Iterate until ||u-f||_2 < %.4f.\n',delta);
elsefprintf('Iterate until ||u-f||_2 < %.4f.\n',delta);
end%% iteration
u = zeros(N,1);
v = u;
k = 0;
fprintf('%5s\t|\t%12s\t|\t%12s\n','k','||u-f||_2','||v||_2');
fprintf([repmat('_',1,45),'\n'])
while norm(u - g) > deltak = k + 1;u = ROF_1D(g + v,mu);     % modified ROFv = v + g - u;                  % update noisefprintf('%5d\t|\t%12.4g\t|\t%12.4g\n',k,norm(u-g),norm(v));
end
end完整代码:https://mbd.pub/o/bread/ZpWXlpdq
擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

图片

图片

  • 擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/38967.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

69. x 的平方根(简单)

69. x 的平方根 1. 题目描述2.详细题解3.代码实现3.1 Python方法一&#xff1a;逐个遍历方法二&#xff1a;二分查找 3.2 Java 1. 题目描述 题目中转&#xff1a;69. x 的平方根 2.详细题解 不能使用系统内置的函数&#xff0c;寻找某个数&#xff08;假定为x&#xff09;的…

网络请求的高效处理:C++ libmicrohttpd库详解

一、libmicrohttpd简介 libmicrohttpd是一个小型的C语言库&#xff0c;用于创建HTTP服务器和客户端。它提供了HTTP 1.1协议的完整实现&#xff0c;包括持久连接、管道化请求、虚拟主机等特性。libmicrohttpd的特点是&#xff1a; 轻量级&#xff1a;易于集成到C或C项目中。跨…

微信好友不小心拉黑了?这样操作,友谊的小船不会翻

在数字化时代&#xff0c;微信已成为我们社交生活的核心&#xff0c;它不仅连接着亲朋好友&#xff0c;更承载着我们的情感与回忆。 然而&#xff0c;情绪波动时&#xff0c;我们可能会一时冲动&#xff0c;将某些好友误送入黑名单。但别担心&#xff0c;今天&#xff0c;就让…

IMU在手语识别中的应用

近期&#xff0c;一款由美国和中国科研团队联合研发的新型的穿戴设备——SignRing&#xff0c;以其独特的IMU&#xff08;惯性测量单元&#xff09;技术&#xff0c;为聋哑人士的手语识别带来了革命性的突破。SignRing不仅极大地扩展了手语识别的词汇量&#xff0c;更提高了识别…

二维数组-----螺旋性矩阵输出

题目有点难&#xff0c;ok其实是很难。。。 观察样例输出&#xff0c;不难发现&#xff0c;螺旋数组中元素的递增轨迹为&#xff1a;右右右、下下下、左左左、上上上 简明为&#xff1a;右、下、左、上。可以设开始递增的元素1的位置为&#xff08;x&#xff0c;y)&#xff0c…

由跨域引发一些思考

由跨域引发一些思考 前言什么是跨域&#xff1f;为什么会产生跨域&#xff1f;跨域场景示例&#xff1a;跨域常见的解决方法&#xff1a;JSONP&#xff08;JSON with Padding&#xff09;CORS&#xff08;Cross-Origin Resource Sharing&#xff09;document.domain iframeloc…

AutoHotKey自动热键(二)中文版帮助手册下载和自定义一般键盘快捷键

所有的操作其实在开发者手册中已经交待完了,所以我们要使用中文的手册来进行使用 autohotkey1.1.15中文手册下载 好了,为什么有了中文手册,这里还要进行一些具体的介绍呢,就是为了让大家少踩坑,能够快速形成生产力 这里先讲一下自定义快捷键WIN键和ALT键和CTRL键和SHIFT键的组…

智慧的网络爬虫之CSS概述

智慧的网络爬虫之CSS概述 ​ CSS 是“Cascading Style Sheet”的缩写&#xff0c;中文意思为“层叠样式表”&#xff0c;用于描述网页的表现形式。如网页元素的位置、大小、颜色等。css的主要作用是定义网页的样式。 CSS样式 1. 行内样式 行内样式&#xff1a;直接定义在 HT…

深入理解Git:fetch与pull的区别与运用

在Git的版本控制世界中&#xff0c;fetch和pull是两个至关重要的命令&#xff0c;它们都与从远程仓库获取数据有关。然而&#xff0c;这两个命令在功能和用法上却存在着显著的差异。本文将详细解析fetch和pull的区别&#xff0c;以及它们在实际开发中的应用&#xff0c;帮助读者…

Qt 5.14.2+Android环境搭建

1. 安装QT5.14.2的过程中&#xff0c;选中套件&#xff08;kit&#xff09; qt for android。 如果已经安装了qt creator但没有安装该套件&#xff0c;可以找到在qt安装目录下的MaintenanceTool.exe&#xff0c;运行该程序添加套件。 2. 安装jdk8&#xff0c;android sdk&…

五分钟了解MQ消息集成

一、MQ消息集成的定义 MQ消息集成是通过消息中间件&#xff08;Message Queue&#xff09;实现的一种数据集成方式。它通过将数据发送到中间件中&#xff0c;再从中间件中接收数据&#xff0c;实现不同系统之间的数据交换。在MQ消息集成中&#xff0c;发送者和接收者之间不需要…

vue3.2及以上 父调子的方法defineExpose定义供父调用的方法及属性

1、定义子类LoginForm&#xff1a; function handleLogin(account, token) {console.log(account,token)}defineExpose({handleLogin,}); 2、父类调用子类组件 const loginFormRef ref(); <LoginForm ref"loginFormRef" />loginFormRef.value.handleLogin(…

代码随想录第38天|动态规划

1049. 最后一块石头的重量 II 参考 备注: 当物体容量也等同于价值时, 01背包问题的含义则是利用好最大的背包容量sum/2, 使得结果尽可能的接近或者小于 sum/2 等价: 尽可能的平分成相同的两堆, 其差则为结果, 比如 (abc)-d, (ac)-(bd) , 最终的结果是一堆减去另外一堆的和, 问…

Deep-LIBRA:一种用于可靠量化乳腺密度的人工智能方法,并在乳腺癌风险评估中进行了独立验证| 文献速递-深度学习自动化疾病检查

Title 题目 Deep-LIBRA: An artificial-intelligence method for robust quantification of breast density with independent validation in breast cancer risk assessment Deep-LIBRA&#xff1a;一种用于可靠量化乳腺密度的人工智能方法&#xff0c;并在乳腺癌风险评估中…

【LeetCode】每日一题:相交链表

给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意&#xff0c;函数返回结果后&am…

7/1 uart

uart4.c #include "uart4.h"//UART4_RX > PB2 //UART4_TX > PG11char rebuf[51] {0}; //rcc/gpio/uart4初始化 void hal_uart4_init() {/********RCC章节初始化*******///1.使能GPIOB组控制器 MP_AHB4ENSETR[1] 1RCC->MP_AHB4ENSETR | (0x1 << 1)…

【C++11:右值引用,列表初始化】

统一列表初始化&#xff1a; 构造函数的函数名与函数体之间增加一个列表&#xff0c;用于对成员初始化 在实例化对象时&#xff0c;支持单/多参数的隐式转化&#xff0c;同时也可以省略符号&#xff0c;让代码更简洁 右值的引用 左值&#xff1a; 左值与右值的重要区别就是能…

全国产化飞腾模块BIOS下修复系统启动文件

1、背景介绍 全国产飞腾模块采用麒麟信安操作系统&#xff0c;当系统下面的grub.cfg文件被用户误操作导致无法启动时&#xff0c;可以在BIOS下通过U盘中备份的grub.cfg替换硬盘上原来的grub.cfg文件&#xff0c;从而实现启动。 2、操作步骤 首先进入BIOS命令行模式&#xff…

Meta低头,库克认错,XR回归第一性原理

图片&#xff5c;Photo by Maxim Hopman on Unsplash ©自象限原创 作者丨罗辑 2024年&#xff0c;XR的故事应该怎么讲&#xff1f; 如果从数据上看&#xff0c;这应该是个沉重的话题。 根据 IDC 报告&#xff0c;2023 年全球 VR 市场出货量下滑了 10.7%。2024 年第一…

【必看】卖惨营销

经常卖惨的人到底是什么心理&#xff1f; Berry Ni同学说&#xff1a; 吸引别人的注意力。想要得到关注。 让你降低对他的期待。 让你能够在他做好一件小事的情况下就表扬他。 控制你对他的想法认知。 ​ 浪矢心理同学说&#xff1a; 1&#xff0c;求关注。他觉得买惨有好处&…