C++算法学习心得八.动态规划算法(6)

1.最长递增子序列(300题)

题目描述:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

  • 输入:nums = [10,9,2,5,3,7,101,18]
  • 输出:4
  • 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

 dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历

j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了。 所以默认习惯 从前向后遍历。

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if(nums.size() <= 1)return nums.size();vector<int>dp(nums.size(),1);int result = 0;for(int i = 1;i < nums.size();i++){for(int j = 0;j < i;j++){if(nums[j] < nums[i])dp[i] = max(dp[i],dp[j] + 1);}if(dp[i] > result)result = dp[i];}return result;}
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n)

2.最长连续递增序列(674题)

题目描述:

给定一个未经排序的整数数组,找到最长且连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

  • 输入:nums = [1,3,5,4,7]
  • 输出:3
  • 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i],

如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i] 和 nums[i - 1]。

以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

 dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if(nums.size() == 0)return nums.size();vector<int>dp(nums.size(),1);int result = 1;for(int i = 1;i < nums.size();i++){if(nums[i] > nums[i - 1])dp[i] = dp[i - 1] + 1;if(dp[i] > result)result = dp[i];}return result;}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

贪心算法:

遇到nums[i] > nums[i - 1]的情况,count就++,否则count为1,记录count的最大值就可以了。

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if(nums.size() == 0)return nums.size();int result = 1;int count = 1;for(int i = 1;i < nums.size();i++){if(nums[i] > nums[i - 1]){count++;}else{count = 1;}if(count > result)result = count;}return result;}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

3.最长重复子数组(718题)

题目描述:

给两个整数数组 A 和 B ,返回两个数组中公共的、长度最长的子数组的长度。

示例:

输入:

  • A: [1,2,3,2,1]
  • B: [3,2,1,4,7]
  • 输出:3
  • 解释:长度最长的公共子数组是 [3, 2, 1] 。

 dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )

dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来。

即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

dp[i][0] 和dp[0][j]初始化为0

外层for循环遍历A,内层for循环遍历B。

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>>dp(nums1.size() + 1,vector<int>(nums2.size() + 1,0));int result = 0;for(int i = 1;i <= nums1.size();i++){for(int j = 1;j <= nums2.size();j++){if(nums1[i - 1] == nums2[j - 1])dp[i][j] = dp[i - 1][j - 1] + 1;if(dp[i][j] > result)result = dp[i][j];}}return result;}
};
  • 时间复杂度:O(n × m),n 为A长度,m为B长度
  • 空间复杂度:O(n × m)

 4.最长公共子序列(1143题)

题目描述:

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

  • 输入:text1 = "abcde", text2 = "ace"
  • 输出:3
  • 解释:最长公共子序列是 "ace",它的长度为 3。

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

dp[i][0] = 0;

同理dp[0][j]也是0。

从前向后,从上到下来遍历这个矩阵。

dp[text1.size()][text2.size()]为最终结果

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>>dp(text1.size()+1,vector<int>(text2.size()+1,0));for(int i = 1;i <= text1.size();i++){for(int j = 1;j <= text2.size();j++){if(text1[i - 1] == text2[j - 1]){dp[i][j] = dp[i - 1][j - 1] + 1;}else{dp[i][j] = max(dp[i - 1][j],dp[i][j - 1]);}}}return dp[text1.size()][text2.size()];}
};
  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

 5.不相交的线(1035题)

题目描述:

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:

  •  nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

 

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度 

class Solution {
public:int maxUncrossedLines(vector<int>& A, vector<int>& B) {vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));for (int i = 1; i <= A.size(); i++) {for (int j = 1; j <= B.size(); j++) {if (A[i - 1] == B[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[A.size()][B.size()];}
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

6. 最大子序和(53题)

题目描述:

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

  • 输入: [-2,1,-3,4,-1,2,1,-5,4]
  • 输出: 6
  • 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

 dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

dp[i]只有两个方向可以推出来:

  • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

dp[0]应该是多少呢?

根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历,在递推公式的时候,可以直接选出最大的dp[i]

class Solution {
public:int maxSubArray(vector<int>& nums) {if(nums.size() == 0)return 0;vector<int>dp(nums.size(),0);//dp[i]表示包括i之前的最大连续子序列和dp[0] = nums[0];int result = dp[0];for(int i = 1;i < nums.size();i++){dp[i] = max(dp[i-1]+nums[i],nums[i]);//状态转移公式,舍弃前面和当前基础上再继续加和if(dp[i] > result)result = dp[i];//result 保存dp[i]的最大值}return result;}
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

总结:

 最长递增子序列:给定一个序列,其内部顺序是不定的,所以这里要求最大升序序列长度,那么先定义dp数组的含义dp[i]代表i之前包括i的以nums[i]结尾的最长递增子序列的长度,进行初始化操作,dp[i]大小为数组大小,且都赋值1,因为设定是长度至少有1,遍历顺序需要双循环来外层I是从1到nums.size(),内层循环从0到i进行遍历,递推公式:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);还要记得需要更新dp[i]的值if(dp[i] > result)result = dp[i];最后返回result即可

最长连续递增序列:动态规划:上一题基础上,介绍dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i],如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1。递推公式:dp[i] = dp[i - 1] + 1,本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历),贪心算法:遇到nums[i] > nums[i - 1]的情况,count就++,否则count为1,记录count的最大值就可以了。

最长重复子数组:给定两个数组,然后对这两个数组求最大重复子数组,dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j],dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来,递推公式:A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1,初始化:dp[i][0] 和dp[0][j]初始化为0,遍历顺序:外层for循环遍历A,内层for循环遍历B。

最长公共子序列:给定两个字符串,但是呢需要求的子序列是不改变相对顺序,且可以删除字符,dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j],text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同,如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

不相交的线:求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度 ,整体代码和上一个最长公共子序列流程一样,想法也大致相同,只是换一些字母。

最大子序和:dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i],dp[i]只有两个方向,一个是dp[i-1]+nums[i],还有从开始nums[i]开始,递推公式:dp[i] = max(dp[i - 1] + nums[i], nums[i]),dp[0]应为nums[0]即dp[0] = nums[0],dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历,在递推公式的时候,可以直接选出最大的dp[i]。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/38911.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis分布式集群部署

目录 一. 原理简述 二. 集群配置​​​​​​​ 2.1 环境准备 2.2 编译安装一个redis 2.3 创建集群 2.4 写入数据测试 实验一&#xff1a; 实验二&#xff1a; 实验三&#xff1a; 实验四&#xff1a; 添加节点 自动分配槽位 提升节点为master&#xff1a; 实验…

关于电商平台分类||电商平台商品分类接口|电商平台商品数据

电商平台 做电商&#xff0c;则要有电商平台&#xff0c;一个为 企业 或 个人 提供网上交易洽谈的平台。. 企业电子商务平台是建立在 Internet 网上进行商务活动的虚拟网络空间和保障商务顺利运营的管理环境&#xff1b;是协调、整合 信息流 、货物流、 资金流 有序、关联、高效…

会员信息一键同步!微盟与客如云联手打造智能服务新体验!

客户介绍 某房地产开发有限公司&#xff0c;自成立以来一直深耕于房地产行业&#xff0c;凭借卓越的开发实力和前瞻性的市场眼光&#xff0c;成为了业界备受瞩目的企业。多年来&#xff0c;该公司始终坚持“品质至上&#xff0c;客户为先”的经营理念&#xff0c;致力于为客户…

掌握React与TypeScript:从零开始绘制中国地图

最近我需要使用reactts绘制一个界面&#xff0c;里面需要以中国地图的形式展示区块链从2019-2024年这五年的备案以及注销情况&#xff0c;所以研究了一下这方面的工作&#xff0c;初步有了一些成果&#xff0c;所以现在做一些分享&#xff0c;希望对大家有帮助&#xff01; 在这…

手把手搞定报名亚马逊科技认证

引言 亚马逊云科技认证考试为我们这些技术从业者提供了提升专业技能的机会。无论选择线上还是线下考试&#xff0c;每种方式都有其独特的优势和挑战。选择合适的考试方式将帮助我们更好地展示自己的技术水平。以下是我对不同考试方式的优缺点介绍&#xff0c;以及各科目的考试…

【pytorch12】什么是梯度

说明 导数偏微分梯度 梯度&#xff1a;是一个向量&#xff0c;向量的每一个轴是每一个方向上的偏微分 梯度是有方向也有大小&#xff0c;梯度的方向代表函数在当前点的一个增长的方向&#xff0c;然后这个向量的长度代表了这个点增长的速率 蓝色代表比较小的值&#xff0c;红色…

七月论文审稿GPT第5版:拿我司七月的早期paper-7方面review数据集微调LLama 3

前言 llama 3出来后&#xff0c;为了通过paper-review的数据集微调3&#xff0c;有以下各种方式 不用任何框架 工具 技术&#xff0c;直接微调原生的llama 3&#xff0c;毕竟也有8k长度了 效果不期望有多高&#xff0c;纯作为baseline通过PI&#xff0c;把llama 3的8K长度扩展…

MySQL-行级锁(行锁、间隙锁、临键锁)

文章目录 1、介绍2、查看意向锁及行锁的加锁情况3、行锁的演示3.1、普通的select语句&#xff0c;执行时&#xff0c;不会加锁3.2、select * from stu where id 1 lock in share mode;3.3、共享锁与共享锁之间兼容。3.4、共享锁与排他锁之间互斥。3.5、排它锁与排他锁之间互斥3…

每日一题---OJ题:分隔链表

片头 嗨&#xff01;小伙伴们&#xff0c;大家好&#xff01;今天我们一起来看看这道题----分隔链表 emmmm&#xff0c;这道题&#xff0c;看描述应该不算太难&#xff0c;我们一起来画一画图呗&#xff01; 题目读懂了&#xff0c;那么如何破解这道题呢&#xff1f; 思路&…

短视频世界对我温柔以待:成都柏煜文化传媒有限公司

短视频世界对我温柔以待 在繁忙的都市生活中&#xff0c;每个人都在为生活奔波&#xff0c;为梦想努力。而在这个快节奏的时代里&#xff0c;短视频如同一股清流&#xff0c;以其独特的魅力&#xff0c;为我带来了片刻的宁静与温柔。它像是一个无声的朋友&#xff0c;在我疲惫…

(必看图文)Hadoop集群安装及MapReduce应用(手把手详解版)

前言 随着大数据时代的到来&#xff0c;处理和分析海量数据已成为企业和科研机构不可或缺的能力。Hadoop&#xff0c;作为开源的分布式计算平台&#xff0c;因其强大的数据处理能力和良好的可扩展性&#xff0c;成为大数据处理领域的佼佼者。本图文教程旨在帮助读者理解Hadoop集…

Mysql面试合集

概念 是一个开源的关系型数据库。 数据库事务及其特性 事务&#xff1a;是一系列的数据库操作&#xff0c;是数据库应用的基本逻辑单位。 事务特性&#xff1a; &#xff08;1&#xff09;原子性&#xff1a;即不可分割性&#xff0c;事务要么全部被执行&#xff0c;要么就…

python 笔试面试八股(自用版~)

1 解释型和编译型语言的区别 解释是翻译一句执行一句&#xff0c;更灵活&#xff0c;eg&#xff1a;python; 解释成机器能理解的指令&#xff0c;而不是二进制码 编译是整个源程序编译成机器可以直接执行的二进制可运行的程序&#xff0c;再运行这个程序 比如c 2 简述下 Pyth…

运维锅总详解RocketMQ

本文尝试从Apache RocketMQ的简介、主要组件及其作用、3种部署模式、Controller集群模式工作流程、最佳实践等方面对其进行详细分析。希望对您有所帮助&#xff01; 一、Apache RocketMQ 简介 Apache RocketMQ 是一个开源的分布式消息中间件&#xff0c;由阿里巴巴集团开发并…

祝贺《华为战略管理法:DSTE实战体系》被《中国企业家》杂志评为企业家枕边书50本之一(宏观战略类书籍)

祝贺《华为战略管理法&#xff1a;DSTE实战体系》被《中国企业家》杂志评为企业家枕边书50本之一 2024年4月23日&#xff08;周二&#xff09;下午13:00&#xff0c;《中国企业家》杂志如期举办“每天都是读书日”线下活动。 《中国企业家》杂志携手商界大咖共同推选50本枕边书…

镭速实现AD域集成助力企业文件安全传输管控

在当今这个信息量爆炸扩张的年代&#xff0c;企业数据宛如一座蕴藏无限价值的宝库&#xff0c;它不仅是企业核心竞争力的载体&#xff0c;也成为了各种潜在风险的聚焦点。随着数字化转型步伐的加快&#xff0c;安全文件传输的管理控制显得尤为重要&#xff0c;它构成了保护企业…

各类排序方法 归并排序 扩展练习 逆序对数量

七月挑战一个月重刷完Y总算法基础题&#xff0c;并且每道题写详细题解 进度:(3/106) 归并排序的思想也是分而治之 归并优点&#xff1a;速度稳定,排序也稳定 排序也稳定&#xff08;数组中有两个一样的值&#xff0c;排序之后他们的前后顺序不发生变化&#xff0c;我们就说…

专题六:Spring源码之初始化容器BeanFactory

上一篇咱们通过一个例子介绍初始化容器上下文相关内容&#xff0c;并通过两个示例代码看到了Spring在设计阶段为我预留的扩展点&#xff0c;和我们应该如何利用这两个扩展点在Spring初始化容器上下文阶段为我们提供服务。这一篇咱们接着往下看。 老这样子下回到refresh方法上来…

第55期:MySQL 频繁 Crash 怎么办?

社区王牌专栏《一问一实验&#xff1a;AI 版》全新改版归来&#xff0c;得到了新老读者们的关注。其中不乏对 ChatDBA 感兴趣的读者前来咨询&#xff0c;表达了想试用体验 ChatDBA 的意愿&#xff0c;对此我们表示感谢 &#x1f91f;。 目前&#xff0c;ChatDBA 还在最后的准备…

MSVCR120.DLL丢失的多种修复方法,助你快速解决dll问题

在日常生活和工作中&#xff0c;电脑已经成为我们不可或缺的工具。然而&#xff0c;在使用电脑的过程中&#xff0c;我们常常会遇到一些问题&#xff0c;其中之一就是电脑运行软件时提示找不到msvcr120.dll。如果该文件缺失或损坏&#xff0c;可能会导致依赖它的应用程序无法启…