排序题目:多数元素 II

文章目录

  • 题目
    • 标题和出处
    • 难度
    • 题目描述
      • 要求
      • 示例
      • 数据范围
      • 进阶
  • 前言
  • 解法一
    • 思路和算法
    • 代码
    • 复杂度分析
  • 解法二
    • 思路和算法
    • 代码
    • 复杂度分析
  • 解法三
    • 思路和算法
    • 代码
    • 复杂度分析

题目

标题和出处

标题:多数元素 II

出处:229. 多数元素 II

难度

3 级

题目描述

要求

给定大小为 n \texttt{n} n 的数组 nums \texttt{nums} nums,找出其中所有出现超过 ⌊ n 3 ⌋ \Big\lfloor \dfrac{\texttt{n}}{\texttt{3}} \Big\rfloor 3n 次的元素。

示例

示例 1:

输入: nums = [3,2,3] \texttt{nums = [3,2,3]} nums = [3,2,3]
输出: [3] \texttt{[3]} [3]

示例 2:

输入: nums = [1] \texttt{nums = [1]} nums = [1]
输出: [1] \texttt{[1]} [1]

示例 3:

输入: nums = [1,2] \texttt{nums = [1,2]} nums = [1,2]
输出: [1,2] \texttt{[1,2]} [1,2]

数据范围

  • n = nums.length \texttt{n} = \texttt{nums.length} n=nums.length
  • 1 ≤ n ≤ 5 × 10 4 \texttt{1} \le \texttt{n} \le \texttt{5} \times \texttt{10}^\texttt{4} 1n5×104
  • -10 9 ≤ nums[i] ≤ 10 9 \texttt{-10}^\texttt{9} \le \texttt{nums[i]} \le \texttt{10}^\texttt{9} -109nums[i]109

进阶

你可以使用线性时间复杂度和 O(1) \texttt{O(1)} O(1) 空间复杂度解决此问题吗?

前言

这道题是「多数元素」的进阶,要求找出数组中所有出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素。这道题也可以使用哈希表计数、排序和摩尔投票三种解法得到答案。

长度是 n n n 的数组中,最多有 2 2 2 个出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素。可以使用反证法证明。

假设有 3 3 3 个出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素,这 3 3 3 个元素的出现次数都不小于 ⌊ n 3 ⌋ + 1 \Big\lfloor \dfrac{n}{3} \Big\rfloor + 1 3n+1,因此这 3 3 3 个元素的总出现次数至少为 3 × ⌊ n 3 ⌋ + 3 3 \times \Big\lfloor \dfrac{n}{3} \Big\rfloor + 3 3×3n+3。由于 ⌊ n 3 ⌋ > n 3 − 1 \Big\lfloor \dfrac{n}{3} \Big\rfloor > \dfrac{n}{3} - 1 3n>3n1,因此 3 × ⌊ n 3 ⌋ + 3 > 3 × ( n 3 − 1 ) + 3 = 3 × n 3 − 3 + 3 = n 3 \times \Big\lfloor \dfrac{n}{3} \Big\rfloor + 3 > 3 \times (\dfrac{n}{3} - 1) + 3 = 3 \times \dfrac{n}{3} - 3 + 3 = n 3×3n+3>3×(3n1)+3=3×3n3+3=n,即这 3 3 3 个元素的总出现次数一定超过 n n n,和数组长度是 n n n 矛盾。因此数组中不可能有 3 3 3 个出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素,最多有 2 2 2 个出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素。

解法一

思路和算法

最直观的解法是统计数组中每个元素的出现次数,然后寻找出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素。

遍历数组,使用哈希表记录每个元素的出现次数,遍历结束之后即可得到数组中每个元素的出现次数。然后遍历哈希表,对于哈希表中的每个元素得到出现次数,将出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素添加到结果中。

代码

class Solution {public List<Integer> majorityElement(int[] nums) {Map<Integer, Integer> counts = new HashMap<Integer, Integer>();for (int num : nums) {counts.put(num, counts.getOrDefault(num, 0) + 1);}List<Integer> majorities = new ArrayList<Integer>();int n = nums.length;Set<Integer> set = counts.keySet();for (int num : set) {if (counts.get(num) > n / 3) {majorities.add(num);}}return majorities;}
}

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。遍历数组统计每个元素的出现次数需要 O ( n ) O(n) O(n) 的时间,遍历哈希表得到多数元素也需要 O ( n ) O(n) O(n) 的时间。

  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。需要创建哈希表记录每个元素的出现次数,哈希表中的元素个数不超过 n n n

解法二

思路和算法

首先将数组排序,排序后的数组满足相等的元素一定出现在数组中的相邻位置。如果一个元素在数组中的出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n,则排序后的数组中存在至少 ⌊ n 3 ⌋ + 1 \Big\lfloor \dfrac{n}{3} \Big\rfloor + 1 3n+1 个连续的元素都等于该元素,即一定存在两个差为 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的下标处的元素都等于该元素。

将数组 nums \textit{nums} nums 排序之后遍历数组 nums \textit{nums} nums,对于下标 i i i,当 i ≥ ⌊ n 3 ⌋ i \ge \Big\lfloor \dfrac{n}{3} \Big\rfloor i3n 时,如果 nums [ i ] = nums [ i − ⌊ n 3 ⌋ ] \textit{nums}[i] = \textit{nums}[i - \Big\lfloor \dfrac{n}{3} \Big\rfloor] nums[i]=nums[i3n],则 nums [ i ] \textit{nums}[i] nums[i] 是出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素。

为了避免重复计算,当 i < n − 1 i < n - 1 i<n1 nums [ i ] = nums [ i + 1 ] \textit{nums}[i] = \textit{nums}[i + 1] nums[i]=nums[i+1] 时跳过下标 i i i,只有当下标 i i i 的右侧没有与 nums [ i ] \textit{nums}[i] nums[i] 相等的元素时才判断 nums [ i ] = nums [ i − ⌊ n 3 ⌋ ] \textit{nums}[i] = \textit{nums}[i - \Big\lfloor \dfrac{n}{3} \Big\rfloor] nums[i]=nums[i3n] 是否成立,如果成立则将 nums [ i ] \textit{nums}[i] nums[i] 添加到结果中。

代码

class Solution {public List<Integer> majorityElement(int[] nums) {Arrays.sort(nums);List<Integer> majorities = new ArrayList<Integer>();int n = nums.length;for (int i = n / 3; i < n; i++) {int num = nums[i];if (i < n - 1 && num == nums[i + 1]) {continue;}if (num == nums[i - n / 3]) {majorities.add(num);}}return majorities;}
}

复杂度分析

  • 时间复杂度: O ( n log ⁡ n ) O(n \log n) O(nlogn),其中 n n n 是数组 nums \textit{nums} nums 的长度。排序需要 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的时间。

  • 空间复杂度: O ( log ⁡ n ) O(\log n) O(logn),其中 n n n 是数组 nums \textit{nums} nums 的长度。排序需要 O ( log ⁡ n ) O(\log n) O(logn) 的递归调用栈空间。

解法三

思路和算法

原始的摩尔投票算法用于找到出现次数大于一半的元素,其时间复杂度是 O ( n ) O(n) O(n),空间复杂度是 O ( 1 ) O(1) O(1)。摩尔投票算法可以推广到寻找出现次数大于 ⌊ n k ⌋ \Big\lfloor \dfrac{n}{k} \Big\rfloor kn 的元素,其中 k k k 是大于 1 1 1 的正整数。

由于出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 的元素不可能超过 2 2 2 个,因此维护 2 2 2 个候选元素 majority 1 \textit{majority}_1 majority1 majority 2 \textit{majority}_2 majority2,以及两个候选元素的出现次数 count 1 \textit{count}_1 count1 count 2 \textit{count}_2 count2,初始时候选元素和出现次数都是 0 0 0

遍历数组,当遍历到元素 num \textit{num} num 时,执行如下操作。

  1. 比较 num \textit{num} num 是否和候选元素相等,如果相等则将相应的出现次数加 1 1 1

    1. 如果 num = majority 1 \textit{num} = \textit{majority}_1 num=majority1,则将 count 1 \textit{count}_1 count1 1 1 1

    2. 否则,如果 num = majority 2 \textit{num} = \textit{majority}_2 num=majority2,则将 count 2 \textit{count}_2 count2 1 1 1

  2. 如果 num \textit{num} num 和两个候选元素都不相等,则判断两个候选元素的出现次数是否为 0 0 0,如果为 0 0 0 则更新候选元素和出现次数。

    1. 如果 count 1 = 0 \textit{count}_1 = 0 count1=0,则将 majority 1 \textit{majority}_1 majority1 更新为 num \textit{num} num,并将 count 1 \textit{count}_1 count1 1 1 1

    2. 否则,如果 count 2 = 0 \textit{count}_2 = 0 count2=0,则将 majority 2 \textit{majority}_2 majority2 更新为 num \textit{num} num,并将 count 2 \textit{count}_2 count2 1 1 1

  3. 如果 num \textit{num} num 和两个候选元素都不相等且两个候选元素的出现次数都大于 0 0 0,则 num \textit{num} num 和两个候选元素抵消,将 count 1 \textit{count}_1 count1 count 2 \textit{count}_2 count2 都减 1 1 1

遍历结束之后,得到两个候选元素。再次遍历数组,统计两个候选元素在数组中的出现次数,当出现次数大于 ⌊ n 3 ⌋ \Big\lfloor \dfrac{n}{3} \Big\rfloor 3n 时将候选元素添加到结果中。

代码

class Solution {public List<Integer> majorityElement(int[] nums) {int majority1 = 0, majority2 = 0;int count1 = 0, count2 = 0;for (int num : nums) {if (num == majority1) {count1++;} else if (num == majority2) {count2++;} else if (count1 == 0) {majority1 = num;count1++;} else if (count2 == 0) {majority2 = num;count2++;} else {count1--;count2--;}}count1 = 0;count2 = 0;for (int num : nums) {if (num == majority1) {count1++;} else if (num == majority2) {count2++;}}List<Integer> majorities = new ArrayList<Integer>();int n = nums.length;if (count1 > n / 3) {majorities.add(majority1);}if (count2 > n / 3) {majorities.add(majority2);}return majorities;}
}

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是数组 nums \textit{nums} nums 的长度。需要遍历数组 nums \textit{nums} nums 两次。

  • 空间复杂度: O ( 1 ) O(1) O(1)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/38704.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css高度0到高度auto,过渡的设置

1.css从高度0到高度auto,过渡设置 方法(vue代码) 你可以通过设置transform: scale(0);到 transform: scale(1); 来实现,具体代码 你也可以通过设置transform: scaleY(0);到 transform: scaleY(1); 这两种展示的效果不一样,你可以看看你喜欢那种 // css代码// 原来的css类 .s…

港口危险货物安全管理人员考试题库(含答案)

一、单选题 1.化学品安全标签内容中警示词有( )种分别进行危害程度的警示。 A、3 B、4 C、5 参考答案:A 2.运输放射性物品&#xff0c;应当使用( )的放射性物品运输包装容器(以下简称运输容器)。 A、专业 B、专用 C、统一 D、定制 参考答案:B 3.库区仪表及计算机监控管理系…

中电金信:金Gien乐道 | 6月热门新闻盘点 回顾这一月的焦点事件

“以检之力 e企守护”——上海市检一分院与中电金信开展联学联建 6月24日&#xff0c;上海市人民检察院第一分院与中电金信数字科技集团股份有限公司联合开展“以检之力 e企守护”联学联建活动。双方共同参观了全国检察机关证券期货犯罪办案基地和重大职务犯罪案件办理&#xf…

HTML5与3D打印:探索网页内容的物理化可能

随着科技的飞速发展&#xff0c;互联网与物理世界的交汇点日益增多。HTML5作为当前网页开发的主流标准&#xff0c;不仅推动了网页内容的丰富性和互动性&#xff0c;还在与3D打印技术的结合中&#xff0c;展现出了将网页内容物理化的巨大潜力。本文将探讨HTML5与3D打印的结合点…

C++ 中的数据类型

C规定在创建一个变量或者常量时&#xff0c;必须要指定出相应的数据类型&#xff0c;否则无法给变量分配内存. 1 整型 作用&#xff1a;整型变量表示的是整数类型的数据 C中能够表示整型的类型有以下几种方式&#xff0c;区别在于所占内存空间不同&#xff1a; 数据类型占用…

python(6)numpy的使用详细讲解

在numpy中&#xff0c;最基本的数据结构是数组&#xff0c;因此我们首先需要了解如何创建一个数组。numpy提供了多种数组创建方法&#xff0c;包括从列表或元组创建、从文件中读取数据、使用特定函数创建等。下面是一些常用的创建方法&#xff1a; 一、创建数组 1. 从列表或元…

【MySQL备份】Percona XtraBackup基础篇

目录 1.关于Percona XtraBackup 2. Percona XtraBackup有哪些特点&#xff1f; 3.安装Percona XtraBackup 3.1.环境信息 3.2.安装步骤 4. xtrabackup内部流程图 5.Percona XtraBackup基础语法 5.1.全量备份 5.2.增量备份 5.2.1.基于全量备份的增量备份 5.2.2.基于前…

[leetcode]max-consecutive-ones 最大连续1的个数

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int findMaxConsecutiveOnes(vector<int>& nums) {int maxCount 0, count 0;int n nums.size();for (int i 0; i < n; i) {if (nums[i] 1) {count;maxCount max(maxCount, count);} else…

安装和微调大模型(基于LLaMA-Factory)

打开终端&#xff08;在Unix或macOS上&#xff09;或命令提示符/Anaconda Prompt&#xff08;在Windows上&#xff09;。 创建一个名为lora的虚拟环境并指定Python版本为3.9。 conda create --name lora python3.9激活新创建的虚拟环境。 conda activate lora克隆项目。 git …

详解COB显示屏的技术特点

COB&#xff08;Chip on Board&#xff09;显示屏作为一种采用倒装COB封装技术的LED显示屏&#xff0c;在显示效果以及使用稳定性跟防护性方面&#xff0c;拥有更大优势&#xff0c;今天跟随COB显示屏厂家中品瑞科技一起来看看&#xff0c;COB显示屏的技术特点&#xff1a; 1、…

如何在OpenEuler 上快速部署一套Zabbix7.0监控系统

如何在OpenEuler 上快速部署一套Zabbix监控系统 一、环境信息 用途机器IP操作系统备注zabbix-server172.22.33.180openeuler 22.03 LTS SP37.0 LTS 版本&#xff0c;容器部署zabbix-agent172.16.10.182openeuler 22.03 LTS SP37.0 源码编译部署 二、Docker 部署 2.1 二进制…

【小白入门】关于视频剪辑该自学还是报课?

★解密&#xff1a;【赋能计划—剪辑小白入门】 ★ 在这个视频流量为王的时代&#xff0c;人人都想打造属于自己的IP&#xff0c;今年更是有许多企业家也纷纷下场干起来了&#xff0c;网上曾流行这样的一句话&#xff1a;“现在人们的生活方式改变了&#xff0c;所有事情都值得…

Anti-Canine Heartworm Antibody (Chicken) - HRP Conjugated

犬心丝虫&#xff08;学名Dirofilaria immitis&#xff09;是一种寄生丝虫&#xff0c;通过蚊子叮咬而传播。感染犬在早期阶段&#xff0c;大多不会出现症状。随着病情发展&#xff0c;将出现咳嗽、呼吸困难等症状&#xff0c;并伴有右心功能衰竭&#xff0c;最终全身衰弱或虚脱…

检索增强生成RAG系列3--RAG优化之文档处理

在上一章中罗列了对RAG准确度的几个重要关键点&#xff0c;主要包括2方面&#xff0c;这一章就针对其中一方面&#xff0c;来做详细的讲解以及其解决方案。 目录 1 文档解析1.1 文档解析工具1.2 实战经验1.3 代码演示 2 文档分块2.1 分块算法2.2 实战经验2.3 代码演示 3 文档e…

VLAN基础

一、什么是Vlan VLAN&#xff08;Virtual Local Area Network&#xff09;是虚拟局域网的简称&#xff0c;是一种将单一物理局域网&#xff08;LAN&#xff09;在逻辑层面上划分为多个独立的广播域的技术。每个VLAN都是一个独立的广播域&#xff0c;其内部主机可以直接通信&am…

python自动化办公之shutil

目录 1复制文件&#xff0c;此时存在2份相同文件 2移动文件&#xff0c;此时仅有1份文件 3删除文件&#xff0c;此时0份文件 用到的库&#xff1a;shutil&#xff0c;os 实现的效果&#xff1a;复制文件&#xff0c;移动文件&#xff0c;删除文件 代码&#xff1a; 1复制…

并发请求数量限制

<!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>并发请求数量限制</title> </head> <…

使用Colly库进行高效的网络爬虫开发

引言 随着互联网技术的飞速发展&#xff0c;网络数据已成为信息获取的重要来源。网络爬虫作为自动获取网页内容的工具&#xff0c;在数据分析、市场研究、信息聚合等领域发挥着重要作用。本文将介绍如何使用Go语言中的Colly库来开发高效的网络爬虫。 什么是Colly库&#xff1…

力扣974.和可被K整除的子数组

力扣974.和可被K整除的子数组 将余数相同的做差 若为负数要翻正再存入哈希表若为正数要存入哈希表统一操作 (sj % k k ) % k class Solution {public:int subarraysDivByK(vector<int>& nums, int k) {int n nums.size();vector<long> s(n1);for(int i0;i…

超声波清洗机怎么选?极力推荐四款口碑大牌超声波清洗机

相信大家都知道超声波清洗机&#xff0c;每次眼镜脏的时候&#xff0c;去眼镜店里让老板帮忙清洗&#xff0c;她们用的就是超声波清洗机&#xff0c;通过超声波的原理深入物品深处清洁&#xff0c;清洁效果非常好。相对手洗的方式&#xff0c;超声波清洗机能够保护镜片在清洗过…