【python】python知名品牌调查问卷数据分析可视化(源码+调查数据表)【独一无二】

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python知名品牌调查问卷数据分析可视化(源码+调查数据表)【独一无二】


目录

  • 【python】python知名品牌调查问卷数据分析可视化(源码+调查数据表)【独一无二】
  • 一、设计要求
        • 描述性统计分析
        • 推论性统计分析
        • 数据可视化
  • 二、设计思路
      • 代码设计思路分析
        • 1. 文件导入与字体设置
        • 2. 读取数据
        • 3. 数据预处理
        • 4. 描述性统计分析
        • 5. 推论性统计分析
  • 三、可视化分析
        • 1. 年龄分布图
        • 2. 性别分布图
        • 3. 职业分布图


一、设计要求

描述性统计分析

对数据进行基本的描述性统计分析,包括以下内容:

  • 年龄分布:计算各年龄段的人数和百分比,并统计年龄的均值、中位数和标准差。
  • 性别分布:计算不同性别的人数和百分比。
  • 职业分布:计算不同职业的人数和百分比。
推论性统计分析

进行推论性统计分析,提供以下功能:

  • t检验:比较不同性别在问卷总分上的差异,输出t统计量和p值。
  • 卡方检验:比较不同年龄段在职业分布上的差异,输出卡方值和p值。
数据可视化

使用Matplotlib进行数据可视化,提供以下图表:

  • 年龄分布图:以柱状图形式展示各年龄段的频次。
  • 性别分布图:以柱状图形式展示不同性别的频次。
  • 职业分布图:以柱状图形式展示不同职业的频次。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈


二、设计思路

代码设计思路分析

1. 文件导入与字体设置
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from matplotlib import font_manager# 设置中文字体
font_path = 'SimHei.ttf'  # 根据实际路径设置字体路径
font = font_manager.FontProperties(fname=font_path)
plt.rcParams['font.family'] = font.get_name()

导入所需的库,设置中文字体路径以确保在可视化过程中中文标签能够正确显示。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈

2. 读取数据
file_path = '264356010_按文本_关于卡尔美运动品牌知名度的问卷调查_47_47.xlsx'
data = pd.read_excel(file_path, engine='openpyxl')

从指定的Excel文件中读取问卷调查数据,使用openpyxl引擎以兼容不同格式的Excel文件。

3. 数据预处理
age_mapping = {'A. 18岁及以下': 18,'B. 19-25岁': 22,'C. 26-35岁': 30,'D. 35岁及以上': 40
}
data['年龄数值'] = data['1、请问您的年龄是?'].map(age_mapping)

将年龄选项转换为数值形式,便于后续的统计分析。通过map方法将年龄区间映射为对应的数值。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈

4. 描述性统计分析
# 年龄分布
# 略.....
# 略.....
# 略.....# 性别分布
# 略.....# 职业分布
# 略.....# 打印描述性统计结果
print('年龄分布:')
print(pd.DataFrame({'Counts': age_counts, 'Percentage': age_percentage}))
print(f'年龄均值: {age_mean:.2f}')
print(f'年龄中位数: {age_median:.2f}')
print(f'年龄标准差: {age_std:.2f}')print('\n性别分布:')
print(pd.DataFrame({'Counts': gender_counts, 'Percentage': gender_percentage}))print('\n职业分布:')
print(pd.DataFrame({'Counts': occupation_counts, 'Percentage': occupation_percentage}))

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈

在这里插入图片描述

在这里插入图片描述

进行描述性统计分析,计算各个类别(年龄、性别、职业)的频次和百分比,并计算年龄的均值、中位数和标准差。输出描述性统计结果,帮助了解数据的基本情况和分布特征。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈

5. 推论性统计分析
# t检验 - 比较不同性别的总分
male_scores = data.loc[data['2、您的性别是?'] == 'A. 男', '总分']
# 略.....
# 略.....
print(f'\nt检验结果: t_stat = {t_stat:.4f}, p_val = {p_val:.4f}')# 卡方检验 - 比较不同年龄段的职业分布
age_groups = pd.cut(data['年龄数值'], bins=[0, 18, 25, 35, 50, 100], labels=['0-18', '19-25', '26-35', '36-50', '50+'])
# 略.....
# 略.....
# 略.....
print(f'\n卡方检验结果: chi2 = {chi2:.4f}, p_val = {p:.4f}')

进行推论性统计分析,包括t检验和卡方检验。t检验用于比较不同性别在总分上的差异,卡方检验用于比较不同年龄段在职业分布上的差异,输出统计检验结果,包括t统计量、p值和卡方值。

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈


三、可视化分析

1. 年龄分布图

年龄分布图以柱状图的形式展示了调查问卷中各个年龄段的受访者人数。这一图表可以直观地反映出调查对象的年龄构成,从中我们可以看到不同年龄段受访者的比例。例如,如果18岁及以下和19-25岁年龄段的柱子明显高于其他年龄段,说明该调查问卷的主要受众是年轻人。这对于市场研究人员来说非常重要,因为了解目标人群的年龄分布可以帮助他们制定更有针对性的营销策略和产品定位。此外,通过观察柱状图中的峰值和低谷,我们还可以识别出调查对象的年龄集中区间和相对较少的年龄段,为后续的分析提供数据支持。

# 年龄分布
plt.figure(figsize=(10, 6))
age_counts.plot(kind='bar')
plt.title('年龄分布', fontproperties=font)
plt.xlabel('年龄', fontproperties=font)
plt.ylabel('人数', fontproperties=font)
plt.show()

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈

2. 性别分布图

性别分布图也是以柱状图的形式展示,反映了调查问卷中男性和女性受访者的比例。通过这个图表,可以清晰地看到调查样本中不同性别的分布情况。例如,如果男性和女性受访者的柱子高度相近,说明该调查在性别上具有较好的平衡性;而如果某一性别的柱子显著高于另一性别,说明调查在性别分布上存在一定的偏向。性别分布对于市场研究和产品开发同样重要,因为不同性别的消费者可能有不同的需求和偏好。了解性别分布可以帮助企业在推广产品时进行性别细分,从而提高营销效果和用户满意度。

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈

3. 职业分布图

职业分布图以柱状图的形式展示了受访者的职业构成。这一图表可以帮助我们了解不同职业背景的受访者在调查中的比例。例如,如果图表中显示学生、白领和自由职业者的柱子较高,说明这些职业群体是调查的主要对象。职业分布信息对于了解目标人群的职业背景和经济能力具有重要意义,可以帮助企业更好地理解消费者的购买力和消费习惯。例如,学生群体可能更关注性价比和品牌形象,而白领群体则可能对产品质量和售后服务有更高的要求。通过分析职业分布图,企业可以制定更有针对性的产品开发和市场推广策略,满足不同职业群体的需求。

在这里插入图片描述


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 调查问卷 ” 获取。👈👈👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/38346.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CleanShot X - 超好用苹果电脑截图录屏工具

Mac 自带的截图工具十分鸡肋,不仅功能少,无法长截图外,也不支持 GIF 制作,很难满足日常做图需求。 CleanShot X 是一款 Mac 平台近乎无可挑剔的专业截图录屏工具 ,能完美代替 Mac 自带截图。它提供超过 50 项功能&…

嵌入式学习——硬件(s3c2440外部中断、定时器中断)——day54

1. start.s preserve8area reset, code, readonlycode32entryldr pc, startnopnopnopnopnop ldr pc, interrupt_handlernopstartldr sp, 0x40001000mrs r0, cpsrbic r0, r0, #0x1Forr r0, r0, #0x12;IRQbic r0, r0, #(1 << 7);打开IRQ中断允许msr cpsr_c, r0ldr …

Nacos配置中心客户端源码分析(一): 客户端如何初始化配置

本文收录于专栏 Nacos 推荐阅读&#xff1a;Nacos 架构 & 原理 文章目录 前言一、NacosConfigBeanDefinitionRegistrar二、NacosPropertySourcePostProcessor三、AbstractNacosPropertySourceBuilder总结「AI生成」 前言 专栏前几篇文章主要讲了Nacos作为服务注册中心相关…

zabbix server client 安装配置

Zabbix Server 采用源码包部署&#xff0c;数据库采用 MySQL8.0 版本&#xff0c;zabbix-web 使用 nginxphp 来实现。具体信息如下&#xff1a; 软件名 版本 安装方式 Zabbix Server 6.0.3 源码安装 Zabbix Agent 6.0.3 源码安装 MySQL 8.0.28 yum安装 Nginx 1.20…

Ubuntu20.04安装vimplus插件

参考文章&#xff1a; Ubuntu Linux下vimplus的安装及使用安装vimplus之后乱码问题解决 1、安装步骤&#xff1a; $ git clone https://github.com/chxuan/vimplus.git ~/.vimplus$ cd ~/.vimplus$ ./install.sh2、./install.sh 过程 出现选择是否备份 /home/yin-roc/.vim…

一个中文和越南语双语版本的助贷平台开源源码

一个中文和越南语双语版本的助贷平台开源源码。后台试nodejs。 后台 代理 前端均为vue源码&#xff0c;前端有中文和越南语。 前端ui黄色大气&#xff0c;逻辑操作简单&#xff0c;注册可对接国际短信&#xff0c;可不对接。 用户注册进去填写资料&#xff0c;后台审批&…

库存管理系统基于spingboot vue的前后端分离仓库库存管理系统java项目java课程设计java毕业设计

文章目录 库存管理系统一、项目演示二、项目介绍三、部分功能截图四、部分代码展示五、底部获取项目源码&#xff08;9.9&#xffe5;带走&#xff09; 库存管理系统 一、项目演示 库存管理系统 二、项目介绍 基于spingboot和vue前后端分离的库存管理系统 功能模块&#xff…

热题系列章节7

剑指 Offer 04. 二维数组中的查找 题目描述&#xff1a; 在一个二维数组中&#xff08;每个一维数组的长度相同&#xff09;&#xff0c;每一行都按照从左到右递增的顺序排序&#xff0c;每一列都按照从上到下递增的顺序排序。请完成一个函数&#xff0c;输入这样的一个二维数…

Go 语言环境搭建

本篇文章为Go语言环境搭建及下载编译器后配置Git终端方法。 目录 安装GO语言SDK Window环境安装 下载 安装测试 安装编辑器 下载编译器 设置git终端方法 总结 安装GO语言SDK Window环境安装 网站 Go下载 - Go语言中文网 - Golang中文社区 还有 All releases - The…

策略模式在金融业务中的应用及其框架实现

引言 策略模式&#xff08;Strategy Pattern&#xff09;是一种行为设计模式&#xff0c;它允许在不修改客户端代码的情况下&#xff0c;动态地改变一个类的行为。它通过定义一系列算法并将它们封装在独立的策略类中&#xff0c;使这些算法可以互相替换&#xff0c;而不会影响…

各维度卷积神经网络内容收录

各维度卷积神经网络内容收录 卷积神经网络&#xff08;CNN&#xff09;&#xff0c;通常是指用于图像分类的2D CNN。但是&#xff0c;现实世界中还使用了其他两种类型的卷积神经网络&#xff0c;即1D CNN和3D CNN。 在1D CNN中&#xff0c;内核沿1个方向移动。1D CNN的输入和…

全球最大智能立体书库|北京:3万货位,715万册,自动出库、分拣、搬运

导语 大家好&#xff0c;我是社长&#xff0c;老K。专注分享智能制造和智能仓储物流等内容。 新书《智能物流系统构成与技术实践》 北京城市图书馆的立体书库采用了先进的WMS&#xff08;仓库管理系统&#xff09;和WCS&#xff08;仓库控制系统&#xff09;&#xff0c;与图书…

leetCode.98. 验证二叉搜索树

leetCode.98. 验证二叉搜索树 题目描述 代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(n…

100张linux C/C++工程师面试高质量图

文章目录 杂项BIOSlinux开机启动流程内核启动流程网络编程网络编程流程tcp状态机三次握手四次断开reactor模型proactor模型select原理poll原理epoll原理文件系统虚拟文件系统文件系统调用阻塞IO非阻塞IO异步IO同步阻塞同步非阻塞IO多路复用进程管理进程状态程序加载内存管理MMU…

vue响应式原理细节分享

在讲解之前&#xff0c;我们先了解一下数据响应式是什么&#xff1f;所谓数据响应式就是建立响应式数据与依赖&#xff08;调用了响应式数据的操作&#xff09;之间的关系&#xff0c;当响应式数据发生变化时&#xff0c;可以通知那些使用了这些响应式数据的依赖操作进行相关更…

前端:多服务端接口资源整合与zip打包下载

项目需求 前端项目开发中,有一个页面需要去整合多个服务接口返回的数据资源,并且需要将这多个服务接口接口返回的数据进行资源压缩,最终打包成zip压缩包,并在客户端完成下载。 基本需求梳理如下, 实现思路 这个需求点其实本质上还是传统的“文件下载”功能需求,常见的例如…

Python使用defaultdict简化值为list的字典

原始代码&#xff1a; from typing import Dictrelated_objects_for_fetch: Dict[str, list] {}for key, value in [(k1, v1), (k1, v2), (k2, v2), (k3, v3), (k2, v2)]:if key not in related_objects_for_fetch:related_objects_for_fetch[key] []if value not in (value…

贪心问题(POJ1700/1017/1065)(C++)

一、贪心问题 贪心算法 贪心算法&#xff08;greedy algorithm&#xff09;&#xff0c;是用计算机来模拟一个「贪心」的人做出决策的过程。这个人十分贪婪&#xff0c;每一步行动总是按某种指标选取最优的操作。而且他目光短浅&#xff0c;总是只看眼前&#xff0c;并不考虑…

第三天:LINK3D核心原理讲解【第1部分】

第三天:LINK3D核心原理讲解 LINK3D学习笔记 目标 了解LINK3D velodyne64线激光雷达LINK3D质心点提取效果: 分布在车道与墙体的交界处。 课程内容 LINK3D论文精讲LINK3D聚合关键点提取代码讲解LINK3D描述子匹配代码讲解除了ALOAM的线特征、面特征,还有其他点云特征吗,是…

如何使用 Postgres 折叠您的堆栈 实现一切#postgresql认证

技术蔓延如何蔓延 假设您正在开发一款新产品或新功能。一开始&#xff0c;您的团队会列出需要解决的技术问题。有些解决方案您将自行开发&#xff08;您的秘诀&#xff09;&#xff0c;而其他解决方案您将使用现有技术&#xff08;可能至少包括一个数据库&#xff09;来解决。…