面试突击:HashMap 源码详解

本文已收录于:https://github.com/danmuking/all-in-one(持续更新)

数据结构

JDK1.8 之前

JDK1.8 之前 HashMap 采用 数组和链表 结合的数据结构。如下图:
HashMap-第 2 页.drawio.png
HashMap 将 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过(n - 1) & hash判断当前元素存放的位置(n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突

什么是拉链法?
拉链法就是将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

JDK1.8 之后

在JDK1.8之中,由于考虑到搜索链表的时间复杂度为 O(n),链表过长的话,遍历链表将会花费过长的时间,因此,JDK1.8中,对 HashMap 的数据结构进行了一定的优化。
当满足一定条件时,会将链表转换为红黑树结构(具体细节见下文),搜索红黑树的时间复杂度为 O(logn),这可以为 HashMap 带来一定的性能提升HashMap-第 2 页.drawio.png
在 JDK1.8 中,还对 HashMap 中计算 hashcode 的函数进行了优化
JDK 1.8 的 hash 方法 相比于 JDK 1.7 hash 方法更加简化。

static final int hash(Object key) {int h;// key.hashCode():返回散列值也就是hashcode// ^:按位异或// >>>:无符号右移,忽略符号位,空位都以0补齐return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}

对比一下 JDK1.7 的 HashMap 的 hash 方法源码.

static int hash(int h) {// This function ensures that hashCodes that differ only by// constant multiples at each bit position have a bounded// number of collisions (approximately 8 at default load factor).h ^= (h >>> 20) ^ (h >>> 12);return h ^ (h >>> 7) ^ (h >>> 4);
}

JDK1.8 的 hash 扰动次数更少,性能更好。

类图

image.png
HashMap 的继承关系很简单,继承于 AbstractMap 并且是实现了 Cloneable 和 Serializable 接口

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
  • AbstractMap : 表明它是一个 Map,支持实现 k-v 形式的查询操作
  • Cloneable :表明它具有拷贝能力,可以进行深拷贝或浅拷贝操作。
  • Serializable : 表明它可以进行序列化操作,也就是可以将对象转换为字节流进行持久化存储或网络传输

核心源码解读

重要变量:

// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶上的结点数大于等于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶上的结点数小于等于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 链表转化为红黑树所需的最小数组容量
// 链表转换为红黑树需要MIN_TREEIFY_CAPACITY和TREEIFY_THRESHOLD两个条件同时满足
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 阈值(容量*负载因子) 当size超过阈值时,会进行扩容
int threshold;
// 负载因子
final float loadFactor;
loadFactor 负载因子

loadFactor 负载因子是控制 HashMap 中数组存放数据的疏密程度,loadFactor 影响的是单位长度的数组中存放的数据数量,loadFactor 越大,单位长度的数组中存放的元素就越多,反之,loadFactor 越小,单位长度的数组中存放的元素就越少

loadFactor 太大会导致导致查找元素效率低,因为数据密集,平均链表长度更长。
loadFactor 太小导致数组的利用率低,存放的数据会很分散,很多数组位置空闲
loadFactor 的默认值为 0.75f 是官方给出的一个比较好的临界值。

threshold 阈值

threshold = capacity * loadFactor,当size > threshold的时候,就会进行数组扩容。

Node 节点
// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> {final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较final K key;//键V value;//值// 指向下一个节点Node<K,V> next;Node(int hash, K key, V value, Node<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}public final K getKey()        { return key; }public final V getValue()      { return value; }public final String toString() { return key + "=" + value; }// 重写hashCode()方法public final int hashCode() {return Objects.hashCode(key) ^ Objects.hashCode(value);}public final V setValue(V newValue) {V oldValue = value;value = newValue;return oldValue;}// 重写 equals() 方法public final boolean equals(Object o) {if (o == this)return true;if (o instanceof Map.Entry) {Map.Entry<?,?> e = (Map.Entry<?,?>)o;if (Objects.equals(key, e.getKey()) &&Objects.equals(value, e.getValue()))return true;}return false;}
}

初始化

HashMap 中有四个构造方法,其中常用的有三个:

// 默认构造函数。
public HashMap() {// 懒加载,初始化的时候不分配空间。this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted}// 指定初始化容量的构造函数public HashMap(int initialCapacity) {this(initialCapacity, DEFAULT_LOAD_FACTOR);}// 指定“容量大小”和“负载因子”的构造函数public HashMap(int initialCapacity, float loadFactor) {if (initialCapacity < 0)throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);// 边界条件处理if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal load factor: " + loadFactor);this.loadFactor = loadFactor;// 初始容量暂时存放到 threshold ,在resize中再赋值给 newCap 进行table初始化// tableSizeFor的作用是找到和initialCapacity最接近的2的次幂,// 因为 HashMap 的容量一定是2的次幂this.threshold = tableSizeFor(initialCapacity);}static final int tableSizeFor(int cap) {int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

HashMap 同样使用懒加载,第一次初始化的时候不分配数组空间,第一次空间分配发生在以第一次调用 put 方法时

put 方法

步骤

向 HashMap 中添加元素需要经过一下步骤:

  1. 计算 key 的 hash 值,并定位到对应的数组位置
  2. 如果定位到的数组位置没有元素 就直接插入。
  3. 如果定位到的数组位置有元素,就和要插入的 key 比较。如果 key 相同就直接覆盖,如果 key 不相同,就需要遍历所有元素,如果找到相同的 key 就覆盖,否则插入到末尾。
public V put(K key, V value) {// 实际调用 putVal 方法return putVal(hash(key), key, value, false, true);
}final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;// table未初始化或者长度为0,进行扩容// 这里会将 table 赋值给 tab,tab.length 赋值给 n,接下来经常有这种写法if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length;// (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null);// 桶中已经存在元素(处理hash冲突)else {Node<K,V> e; K k;//快速判断第一个节点table[i]的key是否与插入的key一样,若相同就直接使用插入的值p替换掉旧的值e。if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))e = p;// 判断插入的是否是红黑树节点else if (p instanceof TreeNode)// 放入树中e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);// 不是红黑树节点则说明为链表结点else {// 遍历链表,如果在链表中找到相同的key就覆盖,否则添加到尾部for (int binCount = 0; ; ++binCount) {// 已经到达链表的尾部if ((e = p.next) == null) {// 在尾部插入新结点p.next = newNode(hash, key, value, null);// 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法// 这个方法会根据 HashMap 数组来决定是否转换为红黑树。// 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。// 否则,就是只是对数组扩容。if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1sttreeifyBin(tab, hash);// 跳出循环break;}// 如果找到key相同的节点,结束遍历,接下来将会覆盖旧值if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))// 相等,跳出循环break;// 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表p = e;}}// 表示在桶中找到key值、hash值与插入元素相等的结点if (e != null) {// 记录e的valueV oldValue = e.value;// onlyIfAbsent为false或者旧值为nullif (!onlyIfAbsent || oldValue == null)//用新值替换旧值e.value = value;// 访问后回调afterNodeAccess(e);// 返回旧值return oldValue;}}// 结构性修改++modCount;// 实际大小大于阈值则扩容if (++size > threshold)resize();// 插入后回调afterNodeInsertion(evict);return null;
}

get 方法

步骤

从 HashMap 中获取元素的步骤与插入元素的步骤差不多:

  1. 计算 key 对应的 hash 值,计算对应的数组位置
  2. 快速比较对应数组位置的元素是不是要获取的元素,是则返回,不是则遍历对应位置的链表
  3. 遍历链表,如果找到相同的key则返回,否则遍历到最后一个节点返回 null
public V get(Object key) {Node<K,V> e;return (e = getNode(hash(key), key)) == null ? null : e.value;
}final Node<K,V> getNode(int hash, Object key) {Node<K,V>[] tab; Node<K,V> first, e; int n; K k;if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {// 比较第一个元素是否相等,相等则快速返回if (first.hash == hash && // always check first node((k = first.key) == key || (key != null && key.equals(k))))return first;// 遍历链表if ((e = first.next) != null) {// 在树中getif (first instanceof TreeNode)return ((TreeNode<K,V>)first).getTreeNode(hash, key);// 在链表中getdo {if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))return e;} while ((e = e.next) != null);}}return null;
}

resize 方法

扩容也是 HashMap 中一个重要的知识点。进行扩容,将会遍历原数组中的所有数据,并重新计算其在新数组中的对应位置,将其转移到新数组中。因此 resize 相当耗时,在程序中需要尽量避免。

很多文章会说在resize的过程中会**重新计算hash的值,这是错误的。**在扩容时将会沿用之前的hash,仅仅重新计算在新数组中的位置。

步骤

resize 的流程很简单,大体来说只有两步:

  1. 创建原数组2倍大小的数组
  2. 将原数组元素移动到新数组
final Node<K,V>[] resize() {Node<K,V>[] oldTab = table;int oldCap = (oldTab == null) ? 0 : oldTab.length;int oldThr = threshold;int newCap, newThr = 0;if (oldCap > 0) {// 超过最大值就不再扩充了,就只好随你碰撞去吧if (oldCap >= MAXIMUM_CAPACITY) {// 同时将阈值设为最大值,之后就不会再扩容了threshold = Integer.MAX_VALUE;return oldTab;}// 没超过最大值,就扩充为原来的2倍else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold}// 下面两个条件是初始化 HashMap 时触发else if (oldThr > 0) // initial capacity was placed in threshold// 创建对象时初始化容量大小放在threshold中,此时只需要将其作为新的数组容量newCap = oldThr;else {// signifies using defaults 无参构造函数创建的对象在这里计算容量和阈值newCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}if (newThr == 0) {// 创建时指定了初始化容量或者负载因子,在这里进行阈值初始化,// 或者扩容前的旧容量小于16,在这里计算新的resize上限float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);}threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;if (oldTab != null) {// 把每个bucket都移动到新的buckets中for (int j = 0; j < oldCap; ++j) {Node<K,V> e;if ((e = oldTab[j]) != null) {oldTab[j] = null;if (e.next == null)// 只有一个节点,直接计算元素新的位置即可newTab[e.hash & (newCap - 1)] = e;else if (e instanceof TreeNode)// 将红黑树拆分成2棵子树,如果子树节点数小于等于 UNTREEIFY_THRESHOLD(默认为 6),则将子树转换为链表。// 如果子树节点数大于 UNTREEIFY_THRESHOLD,则保持子树的树结构。((TreeNode<K,V>)e).split(this, newTab, j, oldCap);else {Node<K,V> loHead = null, loTail = null;Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;do {next = e.next;// 原索引if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}// 原索引+oldCapelse {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);// 原索引放到bucket里if (loTail != null) {loTail.next = null;newTab[j] = loHead;}// 原索引+oldCap放到bucket里if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}return newTab;
}
resize 如何计算数据在新数组中位置?
if ((e.hash & oldCap) == 0) {// 。。。
// 原索引+oldCap
else {// 。。。
}

为什么可以使用(e.hash & oldCap) == 0来计算数据在新数组中的位置呢?因为在 HashMap 中数组的长度一定是2的次幂(不知道的话请重新阅读上面的内容),并且扩容时新数组大小是旧数组的 2 倍。因此可以通过 hash 是否可以被2整除来决定元素应该放在原下标还是原下标+旧数组长度。代码中使用e.hash & oldCap位运算来加快计算速度,举个简单的例子来理解一下这个运算:
hash 实际上是一个int类型,转换为二进制就是32个bit。假设现在有一个大小为16的HashMap,数组下标范围就是0~15,因此可以使用hash的最后4个bit进行表示:image.png
在扩容后大小变为16*2=32,数组下标范围为0~31,可以使用hash的最后5个bit进行表示:
image.png
可以发现,每扩容一次就需要多使用一个bit,而根据多使用的这个bit是0还是1就可以将元素分布到原下标原下标+旧数组长度

点关注,不迷路

好了,以上就是这篇文章的全部内容了,如果你能看到这里,非常感谢你的支持!
如果你觉得这篇文章写的还不错, 求点赞👍 求关注❤️ 求分享👥 对暖男我来说真的 非常有用!!!
白嫖不好,创作不易,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!
如果本篇博客有任何错误,请批评指教,不胜感激 !

最后推荐我的IM项目DiTing(https://github.com/danmuking/DiTing-Go),致力于成为一个初学者友好、易于上手的 IM 解决方案,希望能给你的学习、面试带来一点帮助,如果人才你喜欢,给个Star⭐叭!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/37588.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java第二十九课 —— 断点 | 零钱通项目

断点调试&#xff08;debug&#xff09; 实际需求 在开发中&#xff0c;新手程序员在查找错误时&#xff0c;这时老程序员就会温馨提示&#xff0c;可以用断点调试步一步的看源码执行的过程&#xff0c;从而发现错误所在。 重要提示&#xff1a;在断点调试过程中&#xff0c;…

Open3D(C++) 删除点云中重复的点

目录 一、算法原理1、重叠点2、主要函数二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、重叠点 原始点云克隆一份   构造重叠区域   合并点云获得重叠点 2、主要…

嫦娥六号平安回家,Smartbi非常荣幸参与中国航天项目

“小时不识月&#xff0c;呼作白玉盘。”李白的这句诗&#xff0c;承载了古人对月亮的美好想象与纯真童趣。今天&#xff0c;当我们仰望夜空&#xff0c;那轮明月不仅是诗词中的意象&#xff0c;更是科学探索的目标和梦想的寄托。 2024年6月25日14时07分&#xff0c;嫦娥六号返…

vxeTable反转表格

文章目录 前言 前言 如果遇到列为动态值&#xff0c;行相对固定的情况&#xff0c;这种时候就需要用到行列反转&#xff0c;这里我以vxeTable表格为例。 直接上代码 <vxe-gridref"tableRefRight":auto-resize"true":columns"dataColumn":dat…

第5章_Modbus通讯协议

文章目录 5.1 学习Modbus的快速方法5.1.1 寄存器速记5.1.2 协议速记 5.2 初识Modbus5.2.1 背景5.2.2 什么是Modbus&#xff1f;1. Modbus简介2. Modbus特点3. Modbus常用术语4. Modbus事务处理 5.3 Modbus软件与使用5.3.1 Modbus软件简介5.3.2 Modbus Poll&#xff08;主站设备…

Unity WebGL项目问题记录

一、资源优化 可通过转换工具配套提供的资源优化工具&#xff0c;将游戏内纹理资源针对webgl导出做优化。 工具入口&#xff1a; 工具介绍 Texture 搜索规则介绍 已开启MipMap: 搜索已开启了MipMap的纹理。 NPOT: 搜索非POT图片。 isReadable: 搜索已开启readable纹理。 …

深度之眼(二十八)——神经网络基础知识(三)-卷积神经网络

文章目录 一、前言二、卷积操作2.1 填充&#xff08;padding&#xff09;2.2 步长2.3 输出特征图尺寸计算2.4 多通道卷积 三、池化操作四、Lenet-5及CNN结构进化史4.1 Lenet-5 一、前言 卷积神经网络–AlexNet(最牛)-2012 Lenet-5-大规模商用&#xff08;1989&#xff09; 二、…

昇思25天学习打卡营第3天|网络构建

学习目标&#xff1a;熟练掌握网络构建方法 了解mindspore.nn 实例构建简单的神经网络 网络模型中各层参数 昇思大模型平台 AI实验室 学习记录&#xff1a; 一、关于mindspore.nn 在MindSpore中&#xff0c;Cell类是构建所有网络的基类&#xff0c;也是网络的基本单元。cell…

在vs上远程连接Linux写服务器项目并启动后,可以看到服务启动了,但是通过浏览器访问该服务提示找不到页面

应该是被防火墙挡住了&#xff0c;查看这个如何检查linux服务器被防火墙挡住 • Worktile社区 和这个关于Linux下Nginx服务启动&#xff0c;通过浏览器无法访问的问题_linux无法访问nginx-CSDN博客 的提示之后&#xff0c;知道防火墙开了&#xff0c;想着可能是我写的服务器的…

【R语言】plot输出窗口大小的控制

如果需要输出png格式的图片并设置dpi&#xff0c;可采用以下代码 png("A1.png",width 10.09, height 10.35, units "in",res 300) 为了匹配对应的窗口大小&#xff0c;在输出的时候保持宽度和高度一致即可&#xff0c;步骤如下&#xff1a; 如上的“10…

kali Linux基本命令(超全)_kali linux命令

一、系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件- (SMBIOS / DMI) hdparm -i /dev/hda 罗列一个磁盘的架构特性 hdparm -tT /dev/sda 在磁盘上执行测试性读取操作 cat /proc/cpu…

泽众云真机-平台华为机型HarmonyOS NEXT系统已上线!

泽众云真机平台华为机型HarmonyOS NEXT系统已上线&#xff01; 之前文章《泽众云真机-平台即将升级支持华为机型HarmonyOS NEXT系统泽众云真机-平台即将升级支持华为机型HarmonyOS NEXT系统》&#xff0c;为什么要升级HarmonyOS NEXT系统&#xff1f;我们之前有说过&#xff0c…

第7章_低成本 Modbus 传感器的实现

文章目录 第7章 低成本 Modbus 传感器的实现7.1 硬件资源介绍与接线7.2 开发环境搭建7.3 创建与体验第 1 个工程7.3.1 创建工程7.3.2 配置调试器7.3.3 配置 GPIO 操作 LED 7.4 UART 编程7.4.1 使用 STM32CubeMX 进行配置1.UART12.配置 RS485方向引脚 7.4.2 封装 UART7.4.3 上机…

第十一节:学习通过动态调用application.properties参数配置实体类(自学Spring boot 3.x的第二天)

大家好&#xff0c;我是网创有方。这节实现的效果是通过代码灵活地调用application.properties实现配置类参数赋值。 第一步&#xff1a;编写配置类 package cn.wcyf.wcai.config;import org.springframework.beans.factory.annotation.Value; import org.springframework.boo…

11. Revit API UI 补充

11. Revit API UI 补充 UI篇我也只写了主要的&#xff0c;部分关联的没有写。 以前发的又不想去改&#xff0c;这里就做一些补充吧。 一、可停靠窗口补充 在可停靠窗口那篇&#xff0c;提到要实现IDockablePageProvider接口&#xff0c;就略过了。 该接口要求实现一个方法。…

苏东坡传-读书笔记四

长江三峡&#xff0c;无人不知其风光壮丽&#xff0c;但对旅客而言&#xff0c;则是险象环生。此段江流全长二百二十余里&#xff0c;急流旋涡在悬崖峭壁之间滚转出入&#xff0c;水下暗石隐伏&#xff0c;无由得见&#xff0c;船夫要极其敏捷熟练&#xff0c;才可通行。三峡之…

每日算法-二分查找

适用场景 适用于有序数组中查找某一个值. 每查找一次,就将搜寻范围缩小一半, 平均时间复杂度是O(logN), 简记作:O(lgN). 主要难点 主要难点在于边界条件的判断&#xff1b; 大致思路: 1.当供查找的数组不合法时,直接返回结果,查询无果; 2.当数组长度等于1时,直接判断是否…

Redis 7.x 系列【6】数据类型之字符串(String)

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Redis 版本 7.2.5 源码地址&#xff1a;https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 前言2. 常用命令2.1 SET2.2 GET2.3 MSET2.4 MGET2.5 GETSET2.6 STRLEN2.7 SETEX2.8…

南昌高校大学智能制造实验室数字孪生可视化系统平台建设项目验收

南昌高校大学智能制造实验室&#xff0c;作为该地区乃至全国智能制造领域的重要研究和教学基地&#xff0c;一直致力于探索和创新智能制造技术。近日&#xff0c;该实验室的数字孪生可视化系统平台建设项目成功通过了验收&#xff0c;标志着其在数字孪生技术领域取得了重大突破…

滑动窗口2

1. 水果成篮&#xff08;904&#xff09; 题目描述&#xff1a; 算法原理&#xff1a; 根据题目意思&#xff0c;friuts表示第i棵树上的水果种类&#xff0c;然后我们有两个篮子去在这些树上去采水果&#xff0c;但是有限制就是一个篮子里就只能装一种水果&#xff0c;也就是…