用数组模拟栈实现递归函数模拟

做算法课设时候看到题目要求模拟函数递归时候栈的入栈出栈过程。本来想着直接调用系统递归函数即可,可是发现系统函数栈的空间非常小大约只有3000层,很容易爆栈。于是便有了用栈去模拟递归函数的想法,但是上网查了下貌似相关代码比较少,让GPT写的代码又牛头不对马嘴,于是手搓了一下。用栈模拟递归的过程,对递归过程,栈的理解都很有帮助。

在这里插入图片描述

二分递归函数模拟

第一个函数erfen为正常的二分递归函数,但是系统的递归栈最多能递归到3000层左右,太少了。我们可以用栈来模拟函数递归的过程,这样栈的层数可以达到我们设置的数组大小,我这里设置了二十万。

#include <iostream>using namespace std;const int N = 2e5 + 5;struct binaryFrame {int l, r;int level;//记录当前层数int step;//记录步数
}stackBinary[N];/*需要模拟的二分递归函数
int erfen(int arr[], int l, int r, int key)
{int ans = -1;int mid = l + r >> 1;if (arr[mid] == key && l == r) return r;if (l >= r) return -1;if (arr[mid] >= key) {ans = erfen(arr, l, mid, key);}else {ans = erfen(arr, mid + 1, r, key);}return ans;
}
*/void binarySearch(int arr[], int l, int r, int key, int& index)
{int nowLevel = 1, nowStep = 0, tt = 0, L = l, R = r;tt++;stackBinary[tt] = { l,r,nowLevel,nowStep };cout << "压栈:" << "当前执行函数纸带范围为:(" << L << " , " << R << " )" << " 层数为" << nowLevel << " 执行步数为" << nowStep << "\n";while (L < R){int mid = L + R >> 1;if (arr[mid] >= key){R = mid;stackBinary[++tt] = { L,R,++nowLevel,++nowStep };cout << "压栈:" << "当前执行函数纸带范围为:(" << L << " , " << R << " )" << " 层数为" << nowLevel << " 执行步数为" << nowStep << "\n";}else {L = mid + 1;stackBinary[++tt] = { L,R,++nowLevel,++nowStep };cout << "压栈:" << "当前执行函数纸带范围为:(" << L << " , " << R << " )" << " 层数为" << nowLevel << " 执行步数为" << nowStep << "\n";}}if (arr[R] == key) {index = R;}while (tt > 0){cout << "出栈:" << "当前执行函数纸带范围为:(" << stackBinary[tt].l << " , " << stackBinary[tt].r << " )" << " 层数为" << stackBinary[tt].level << " 执行步数为" << stackBinary[tt].step << "\n";tt--;}}int main()
{int arr[] = { 1,2,3,4,5,6,7,8,9,10 };int n = 10;int key = 2;int index = -1;binarySearch(arr, 0, n - 1, key, index);if (index == -1) {cout << "找不到这个吊数\n";}else {cout << "这个B数在数组中的第" << index + 1 << "个位置" << "\n";}return 0;
}

显示压栈出栈过程
在这里插入图片描述

栈模拟回溯法解决01背包

#include<iostream>
#include<vector>using namespace std;typedef long long LL;const int N = 2e5 + 5;/*
// 全局变量用于存储最终结果
int max_value = 0;
vector<int> best_set;/*
// 需要模拟的递归回溯函数
void knapsack(int index, int current_weight, int current_value, int capacity, const vector<int>& weights, const vector<int>& values, vector<int>& chosen_items) {// 基础情况:如果考虑完所有物品if (index == weights.size()) {// 检查当前物品集合是否是一个有效解if (current_weight <= capacity && current_value > max_value) {max_value = current_value;best_set = chosen_items;}return;}// 选择当前物品chosen_items.push_back(index);knapsack(index + 1, current_weight + weights[index], current_value + values[index], capacity, weights, values, chosen_items);chosen_items.pop_back(); // 回溯// 不选择当前物品knapsack(index + 1, current_weight, current_value, capacity, weights, values, chosen_items);
}*/struct backFrame
{int index;int current_weight;int current_value;int step;vector<int> chosenItems;int stage;
}stackBack[N];void backBag(int n, int capacity, int& max_value, vector<int>& weights, vector<int>& values, vector<int>& chosenItems, vector<int>& best_set)
{int tt = 0, nowStep = 0;stackBack[++tt] = { 0,0,0,0,{},0 };cout << "压栈:初始化压栈,压入 0 0 0 0 {} 0" << "\n";while (tt > 0){backFrame now = stackBack[tt];cout << "当前执行函数层为:" << now.index << " " << now.current_weight << " " << now.current_value << " " << now.step << "\n";if (stackBack[tt].index >= n) {if (stackBack[tt].current_value > max_value && stackBack[tt].current_weight <= capacity){max_value = stackBack[tt].current_value;best_set = stackBack[tt].chosenItems;cout << "更新best_set ";for (auto i : best_set) cout << i + 1 << " ";cout << "\n";}tt--;cout << "出栈1:" << now.index  << " " << now.current_weight<< " " << now.current_value << " " << now.step << "\n";continue;}if (now.stage == 0) {//栈顶为初始状态的话直接下一层函数压栈chosenItems.push_back(now.index);stackBack[++tt] = { now.index + 1,now.current_weight + weights[now.index],now.current_value + values[now.index],now.step + 1,chosenItems,0 };cout << "压栈1: " << now.index + 1 << " " << now.current_weight + weights[now.index] << " " << now.current_value + values[now.index] << " " << now.step + 1 << "\n";stackBack[tt - 1].stage ++;}else if (now.stage == 1) {chosenItems.pop_back();stackBack[++tt] = { now.index + 1,now.current_weight,now.current_value,now.step + 1,chosenItems,0 };cout << "压栈2: " << now.index + 1 << " " << now.current_weight << " " << now.current_value  << " " << now.step + 1 << "\n";stackBack[tt - 1].stage ++;}else if (now.stage == 2) {tt--;cout << "出栈2:" << now.index  << " " << now.current_weight<< " " << now.current_value << " " << now.step << "\n";}}}int main()
{vector<int> weights = { 1,2,3,5,7,6 };vector<int> values = { 6,5,10,30,15,25 };vector<int> chosenItems;vector<int> best_set;int capacity = 10, n = 6;int max_value = -1;/*cout << "请输入物品件数和背包容量\n";cin >> n >> capacity;cout << "请输入" << n << "件物品,每件物品的质量,价值\n";for (int i = 0; i < n; i++){int x, y;cin >> x >> y;weights.push_back(x);values.push_back(y);}*/backBag(n, capacity, max_value, weights, values, chosenItems, best_set);LL sum = 0;for (auto i : best_set){cout << "选择了第" << i + 1 << "件物品\n";sum += weights[i];}cout << "可以获得的最大价值为" << max_value << "\n";cout << "所占用的背包空间为" << sum << "\n";return 0;
}/*
6 10
1 6
2 5
3 10
5 30
7 15
6 25
*/

在这里插入图片描述

栈模拟备忘录法解决01背包

#include <iostream>
#include <vector>
#include <cstring>
#include<Windows.h>using namespace std;const int N = 2e4 + 5;int n, W;int dp[505][1005]; // 备忘录数组
vector<int> weights;
vector<int> values;/*需要模拟的备忘录递归函数
// 递归函数,包含备忘录算法逻辑,改为void类型
void knapsack(int idx, int W, int N, int& maxVal) {// 基本情况if (idx == N || W == 0) {maxVal = 0;cout << "边界:" << idx << " " << W << " " << maxVal << "\n";return;}// 检查是否已经计算过if (dp[idx][W] != -1) {maxVal = dp[idx][W];cout << "已经计算过:" << idx << " " << W << " " << maxVal << "\n";return;}// 选择不包含当前物品knapsack(idx + 1, W, N, maxVal);int without = maxVal; // 从上一次递归中获取结果cout << "without:" << idx << " " << W << " " << without << "\n";int with = 0;// 选择包含当前物品,如果背包容量足够if (W >= weight[idx]) {knapsack(idx + 1, W - weight[idx], N, with);with = values[idx] + with; // 添加当前物品的价值cout << "with:" << idx << " " << W << " " << with << "\n";}// 计算最大价值并存储备忘录结果maxVal = max(without, with);dp[idx][W] = maxVal; // 存储备忘录结果//cout<<"idx=,W=,dp= "<<idx<<" "<<W<<" "<<dp[idx]
}*/struct memoFrame
{int index;int with;int without;int max_value;int capacity;int stage;
}stackMemo[N];void memoBag(int index, int capacity, vector<int>& weights, vector<int>& values)
{int tt = 0;stackMemo[++tt] = { 0,0,0,0,capacity,0 };int max_value = 0;while (tt > 0){//cout << "cnt=" << cnt << "\n";memoFrame& now = stackMemo[tt];//cout << "当前函数层为,index,capacity,stage=" << now.index << " " << now.capacity << " " << now.stage << "\n";if ((now.index == n || now.capacity <= 0)) {memoFrame& last = stackMemo[tt - 1];last.max_value = 0;//cout << "当前层为:,返回给上一层的返回值为" << now.index << " " << now.capacity << " " << last.max_value << "\n";tt--;//cout << "出栈:index,capacity,return" << now.index << " " << now.capacity << " " << last.max_value << "\n";continue;}if (dp[now.index][now.capacity] != -1){memoFrame& last = stackMemo[tt - 1];last.max_value = dp[now.index][now.capacity];//cout << "当前层为:,返回给上一层的返回值为" << now.index << " " << now.capacity << " " << last.max_value << "\n";tt--;//cout << "出栈:index,capacity,return" << now.index << " " << now.capacity << " " << last.max_value << "\n";continue;}if (now.stage == 0){stackMemo[++tt] = { now.index + 1,0,0,0,now.capacity,0 };//cout << "压栈0:" << now.index + 1 << " " << now.capacity << " " << "\n";now.stage++;}else if (now.stage == 1){now.without = now.max_value;//cout << "更新without:index, without:" << now.index << " " << now.without << "\n";now.stage++;}else if (now.stage == 2){if (now.capacity >= weights[now.index]) stackMemo[++tt] = { now.index + 1, 0, 0, 0, now.capacity - weights[now.index], 0 };// cout << "压栈1:" << now.index + 1 << " " << now.capacity << " " << "\n";now.stage++;}else if (now.stage == 3){if (now.capacity >= weights[now.index]){now.with = now.max_value + values[now.index];//cout << "更新with, index,with:" << now.index << " " << now.with << "\n";}now.stage++;}else if (now.stage == 4){memoFrame& last = stackMemo[tt - 1];dp[now.index][now.capacity] = max(now.with, now.without);for (int i = 0; i < n; i++){for (int j = 0; j < W; j++){cout << dp[i][j] << " ";}cout << "\n";}last.max_value = dp[now.index][now.capacity];Sleep(1000);//cout << "更新dp: index,dp:" << now.index << " " << last.max_value << "\n";tt--;//cout << "出栈:index,capacity,return" << now.index << " " << now.capacity << " " << last.max_value << "\n";}}}int main() {cin >> n >> W;; // 读取物品数量和背包容量weights.resize(n);values.resize(n);for (int i = 0; i < n; ++i) {cin >> weights[i] >> values[i];}memset(dp, -1, sizeof(dp));memoBag(0, W, weights, values);cout << "最大价值:" << dp[0][W] << endl;return 0;
}/*
6 10
1 6
2 5
3 10
5 30
7 15
6 25
*/

在这里插入图片描述

把三个题整合到一块

#include <iostream>
#include <vector>
#include <cstring>
#include<iomanip>
#include <windows.h>using namespace std;const int N = 2e4 + 5;typedef long long LL;int n, W;//n可以是二分的数组长度,也可以是背包的物品个数,W是背包容量int ansPos=-1;//二分搜索到的答案位置int arr[N];int dp[505][1005]; // 备忘录数组
vector<int> weights;
vector<int> values;struct binaryFrame {int l, r;int level;//记录当前层数int step;//记录步数
}stackBinary[N];struct backFrame
{int index;int current_weight;int current_value;int step;vector<int> chosenItems;int stage;
}stackBack[N];struct memoFrame
{int index;int with;int without;int max_value;int capacity;int stage;
}stackMemo[N];void binarySearch(int l, int r, int key)
{int nowLevel = 1, nowStep = 0, tt = 0, L = l, R = r;tt++;stackBinary[tt] = { l,r,nowLevel,nowStep };cout<<right<<setw(50) << "压栈:" << "当前执行函数纸带范围为:(" << L << " , " << R << " )" << " 层数为" << nowLevel << " 执行步数为" << nowStep << "\n";Sleep(200);while (L < R){int mid = L + R >> 1;if (arr[mid] >= key){R = mid;stackBinary[++tt] = { L,R,++nowLevel,++nowStep };cout<<right<<setw(50) << "压栈:" << "当前执行函数纸带范围为:(" << L << " , " << R << " )" << " 层数为" << nowLevel << " 执行步数为" << nowStep << "\n";Sleep(200);}else {L = mid + 1;stackBinary[++tt] = { L,R,++nowLevel,++nowStep };cout<<right<<setw(50) << "压栈:" << "当前执行函数纸带范围为:(" << L << " , " << R << " )" << " 层数为" << nowLevel << " 执行步数为" << nowStep << "\n";Sleep(200);}}if (arr[R] == key) {ansPos = R;}while (tt > 0){cout<<right<<setw(50) << "出栈:" << "当前执行函数纸带范围为:(" << stackBinary[tt].l << " , " << stackBinary[tt].r << " )" << " 层数为" << stackBinary[tt].level << " 执行步数为" << stackBinary[tt].step << "\n";Sleep(200);tt--;}}void backBag(int n, int capacity, int& max_value, vector<int>& weights, vector<int>& values, vector<int>& chosenItems, vector<int>& best_set)
{int tt = 0, nowStep = 0;stackBack[++tt] = { 0,0,0,0,{},0 };cout<<right<<setw(50) << "压栈:初始化压栈,压入 0 0 0 0 {} 0" << "\n";Sleep(200);while (tt > 0){backFrame now = stackBack[tt];cout << right << setw(50) << "当前执行函数层为:下标为:" << now.index << " 当前重量:" << now.current_weight << " 当前价值:" << now.current_value << " 当前步数:" << now.step << "\n";Sleep(200);if (stackBack[tt].index >= n) {if (stackBack[tt].current_value > max_value && stackBack[tt].current_weight <= capacity){max_value = stackBack[tt].current_value;best_set = stackBack[tt].chosenItems;}tt--;cout<<right<<setw(50) << "出栈1:出栈下标:" << now.index << " 当前重量:" << now.current_weight << " 当前价值:" << now.current_value << " 当前步数:" << now.step << "\n";Sleep(200);continue;}if (now.stage == 0) {//栈顶为初始状态的话直接下一层函数压栈chosenItems.push_back(now.index);stackBack[++tt] = { now.index + 1,now.current_weight + weights[now.index],now.current_value + values[now.index],now.step + 1,chosenItems,0 };cout<<right<<setw(50) << "压栈1: 压栈下标:" << now.index + 1 << " 压栈重量:" << now.current_weight + weights[now.index] << " 压栈价值:" << now.current_value + values[now.index] << " 压栈步数:" << now.step + 1 << "\n";Sleep(200);stackBack[tt - 1].stage++;}else if (now.stage == 1) {chosenItems.pop_back();stackBack[++tt] = { now.index + 1,now.current_weight,now.current_value,now.step + 1,chosenItems,0 };cout<<right<<setw(50) << "压栈2: 压栈下标:" << now.index + 1 << " 压栈重量:" << now.current_weight << " " << now.current_value << " " << now.step + 1 << "\n";Sleep(200);stackBack[tt - 1].stage++;}else if (now.stage == 2) {tt--;cout<<right<<setw(50) << "出栈2:" << now.index << " 出栈重量:" << now.current_weight << " 出栈价值:" << now.current_value << " 出栈步数" << now.step << "\n";Sleep(200);}}}void memoBag(int index, int capacity, vector<int>& weights, vector<int>& values)
{int tt = 0;stackMemo[++tt] = { 0,0,0,0,capacity,0 };int max_value = 0;while (tt > 0){memoFrame& now = stackMemo[tt];cout<<right<<setw(50) << "当前函数层为,当前执行下标:" << now.index << " 当前背包剩余容量:" << now.capacity << " 当前stage:" << now.stage << "\n";Sleep(200);if ((now.index == n || now.capacity <= 0)) {memoFrame& last = stackMemo[tt - 1];last.max_value = 0;//cout << "当前层为:,返回给上一层的返回值为" << now.index << " " << now.capacity << " " << last.max_value << "\n";tt--;cout<<right<<setw(50) << "出栈:出栈下标:" << now.index << " 出栈时剩余背包容量:" << now.capacity << " 出栈返回值:" << last.max_value << "\n";Sleep(200);continue;}if (dp[now.index][now.capacity] != -1){memoFrame& last = stackMemo[tt - 1];last.max_value = dp[now.index][now.capacity];//cout << "当前层为:,返回给上一层的返回值为" << now.index << " " << now.capacity << " " << last.max_value << "\n";tt--;cout<<right<<setw(50) << "出栈:出栈下标:" << now.index << " 出栈时剩余背包容量:" << now.capacity << " 出栈时返回值:" << last.max_value << "\n";Sleep(200);continue;}if (now.stage == 0){stackMemo[++tt] = { now.index + 1,0,0,0,now.capacity,0 };cout<<right<<setw(50) << "压栈0:压栈下标:" << now.index + 1 << " 压栈背包容量;" << now.capacity << " " << "\n";Sleep(200);now.stage++;}else if (now.stage == 1){now.without = now.max_value;//cout << "更新without:index, without:" << now.index << " " << now.without << "\n";now.stage++;}else if (now.stage == 2){if (now.capacity >= weights[now.index]) stackMemo[++tt] = { now.index + 1, 0, 0, 0, now.capacity - weights[now.index], 0 };cout<<right<<setw(50) << "压栈1:压栈下标:" << now.index + 1 << " 压栈背包容量:" << now.capacity-weights[now.index] << " " << "\n";Sleep(200);now.stage++;}else if (now.stage == 3){if (now.capacity >= weights[now.index]){now.with = now.max_value + values[now.index];//cout << "更新with, index,with:" << now.index << " " << now.with << "\n";}now.stage++;}else if (now.stage == 4){memoFrame& last = stackMemo[tt - 1];dp[now.index][now.capacity] = max(now.with, now.without);last.max_value = dp[now.index][now.capacity];//cout << "更新dp: index,dp:" << now.index << " " << last.max_value << "\n";tt--;cout<<right<<setw(50) << "出栈:出栈下标:" << now.index << " 出栈时背包容量:" << now.capacity << " 这一层出栈的返回值:" << last.max_value << "\n";Sleep(200);}}}int main() 
{int op;cout<<right<<setw(50) << "请选择要执行的递归函数模拟:1.二分搜索,2.回溯法,3.备忘录法\n";while(cin >> op) {if (op == 1) {int key;cout << right << setw(50) << "栈模拟递归二分算法\n\n\n";cout << right << setw(50) << "请输入查询数组长度\n";cin >> n;cout << right << setw(50) << "请输入" << n << "个数字\n";for (int i = 0; i < n; i++){cin >> arr[i];}cout << right << setw(50) << "请输入需要查找的数字key\n";cin >> key;binarySearch(0, n - 1, key);if (ansPos == -1) cout << right << setw(50) << "找不到这个吊数\n";else cout << right << setw(50) << "数字" << key << "在数组中的第" << ansPos + 1 << "个位置\n";}else if (op == 2){weights.clear();values.clear();cout << right << setw(50) << "栈模拟递归回溯算法\n\n\n";cout << right << setw(50) << "请输入物品件数和背包容量\n";cin >> n >> W;cout << right << setw(50) << "请输入" << n << "件物品的质量和价值\n";for (int i = 0; i < n; i++){int x, y;cin >> x >> y;weights.push_back(x);values.push_back(y);}int max_value = -1;vector<int> best_set;vector<int> chosenItems;backBag(n, W, max_value, weights, values, chosenItems, best_set);cout << right << setw(50) << "可以获得的最大价值为:" << max_value << "\n";for (auto i : best_set){cout << right << setw(50) << "选择了第" << i + 1 << "件物品\n";}}else if (op == 3){weights.clear();values.clear();cout << right << setw(50) << "栈模拟递归备忘录算法\n\n\n";cout << right << setw(50) << "请输入物品件数和背包容量\n";cin >> n >> W;cout << right << setw(50) << "请输入" << n << "件物品的质量和价值\n";for (int i = 0; i < n; i++){int x, y;cin >> x >> y;weights.push_back(x);values.push_back(y);}memset(dp, -1, sizeof(dp));memoBag(0, W, weights, values);cout << right << setw(50) << "能获得的最大价值为:" << dp[0][W] << "\n";}cout << right << setw(50) << "1.继续,2.结束\n";cin >> op;if (op == 2) break;cout << right << setw(50) << "请选择要执行的递归函数模拟:1.二分搜索,2.回溯法,3.备忘录法\n";}return 0;
}/*二分搜索样例输入
10
1 2 3 4 5 6 7 8 9 10
2
*//*回溯与备忘录样例输入
6 10
1 6
2 5
3 10
5 30
7 15
6 25
*//*需要模拟的二分递归函数
int erfen(int arr[], int l, int r, int key)
{int ans = -1;int mid = l + r >> 1;if (arr[mid] == key && l == r) return r;if (l >= r) return -1;if (arr[mid] >= key) {ans = erfen(arr, l, mid, key);}else {ans = erfen(arr, mid + 1, r, key);}return ans;
}
*//*
// 需要模拟的递归回溯函数
void knapsack(int index, int current_weight, int current_value, int capacity, const vector<int>& weights, const vector<int>& values, vector<int>& chosen_items) {// 基础情况:如果考虑完所有物品if (index == weights.size()) {// 检查当前物品集合是否是一个有效解if (current_weight <= capacity && current_value > max_value) {max_value = current_value;best_set = chosen_items;}return;}// 选择当前物品chosen_items.push_back(index);knapsack(index + 1, current_weight + weights[index], current_value + values[index], capacity, weights, values, chosen_items);chosen_items.pop_back(); // 回溯// 不选择当前物品knapsack(index + 1, current_weight, current_value, capacity, weights, values, chosen_items);
}*//*需要模拟的备忘录递归函数
// 递归函数,包含备忘录算法逻辑,改为void类型
void knapsack(int idx, int W, int N, int& maxVal) {// 基本情况if (idx == N || W == 0) {maxVal = 0;cout << "边界:" << idx << " " << W << " " << maxVal << "\n";return;}// 检查是否已经计算过if (dp[idx][W] != -1) {maxVal = dp[idx][W];cout << "已经计算过:" << idx << " " << W << " " << maxVal << "\n";return;}// 选择不包含当前物品knapsack(idx + 1, W, N, maxVal);int without = maxVal; // 从上一次递归中获取结果cout << "without:" << idx << " " << W << " " << without << "\n";int with = 0;// 选择包含当前物品,如果背包容量足够if (W >= weight[idx]) {knapsack(idx + 1, W - weight[idx], N, with);with = values[idx] + with; // 添加当前物品的价值cout << "with:" << idx << " " << W << " " << with << "\n";}// 计算最大价值并存储备忘录结果maxVal = max(without, with);dp[idx][W] = maxVal; // 存储备忘录结果//cout<<"idx=,W=,dp= "<<idx<<" "<<W<<" "<<dp[idx]
}*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/37026.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小马搬运物品-第13届蓝桥杯省赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第89讲。 小马搬运物品&…

如何与Honda建立EDI连接?

你是本田Honda的新供应商&#xff0c;需要具备EDI电子数据交换功能吗&#xff1f;在与本田Honda交换EDI消息时需要帮助吗&#xff1f;本文将带你快速了解Honda的EDI需求&#xff0c;明确EDI对接需要完成的工作。 项目背景 本田是一家世界领先的汽车制造商&#xff0c;在全球2…

仓库选址问题【数学规划的应用(含代码)】阿里达院MindOpt

本文主要讲述使用MindOpt工具优化仓库选址的数学规划问题。 视频讲解&#x1f448;&#x1f448;&#x1f448;&#x1f448;&#x1f448;&#x1f448;&#x1f448;&#x1f448;&#x1f448; 一、案例场景 仓库选址问题在现代物流和供应链管理中具有重要的应用。因为仓库…

《数据结构与算法基础 by王卓老师》学习笔记——2.2线性表的案例引入

案例一&#xff1a;一元多项式的运算 案例二&#xff1a;稀疏多项式的运算 案例三&#xff1a;图书信息管理系统 总结

【Leetcode】520. 检测大写字母

文章目录 题目思路代码复杂度分析时间复杂度空间复杂度 结果总结 题目 题目链接&#x1f517;我们定义&#xff0c;在以下情况时&#xff0c;单词的大写用法是正确的&#xff1a; 全部字母都是大写&#xff0c;比如 “USA” 。单词中所有字母都不是大写&#xff0c;比如 “le…

同心创建 共践食安 | 赵梦澈荣获食品安全大使

“民族要复兴&#xff0c;乡村必振兴”&#xff0c;为深入贯彻落实国家乡村振兴战略&#xff0c;推进乡村全面振兴不断取得新成效&#xff0c;助力全国优质食品农产品的宣传推广、市场营销、品牌创建工作&#xff0c;由中国食品安全报社主办&#xff0c;商业发展中心、健康中国…

python数据分析与可视化一

公共部分 # 引入数据分析工具 Pandas import pandas as pd # 引入数据可视化工具 Matplotlib import matplotlib.pyplot as plt # 引入数据可视化工具 Seaborn (基于matplotlib) import seaborn as sns # 解决输出时的列名对齐问题 pd.set_option(display.unicode.east_…

如何申请免费SSL证书以消除访问网站显示连接不安全提醒

在当今互联网时代&#xff0c;网络安全已成为一个不可忽视的问题。当用户浏览一些网站时&#xff0c;有时会看到浏览器地址栏出现“不安全”的提示&#xff0c;这意味着该网站没有安装SSL证书&#xff0c;数据传输可能存在风险。那么&#xff0c;如何消除这种不安全提醒&#x…

仓库管理系统16--入库管理

原创不易&#xff0c;打字不易&#xff0c;截图不易&#xff0c;多多点赞&#xff0c;送人玫瑰&#xff0c;留有余香&#xff0c;财务自由明日实现。 1、创建物资入库用户控件 <UserControl x:Class"West.StoreMgr.View.InStoreView"xmlns"http://schema…

CAS自旋解析

CAS全称CompareAndSwap(比较并交换)&#xff0c;是cpu的指令&#xff0c;调用时不涉及上下文的切换。Java中属于乐观锁的一种&#xff0c;具体流程如下图&#xff1a; 具体的实现使用的是Unsafe类去调用native修饰的compareAndSwap方法&#xff0c;4个字段分别是对象实例&#…

PTA—C语言期末复习(判断题)

1. C语言程序是从源文件的第一条语句开始执行的 &#xff08;F&#xff09; 在 C 语言中&#xff0c;程序是从 main 函数开始执行的&#xff0c;而不是从源文件的第一条语句开始执行 2. 若变量定义为double x;&#xff0c;则x % 2是符合C语言语法的表达式 &#xff08;F&#…

HTML流星雨

目录 写在前面 完整代码 代码分析 系列文章 写在最后 写在前面 岁月如梭&#xff0c;光阴似箭&#xff0c;不知不觉暑假就要来喽&#xff0c;本期小编用HTML给大家手搓了一个炫酷的流星雨动画&#xff0c;一起来看看吧。 完整代码 <!DOCTYPE html> <html lang…

项目风险管理系统有哪些?分享11款主流项目管理系统

本文将分享11款主流项目管理系统&#xff1a;PingCode、Worktile、StandardFusion、MasterControl、ClickUp、SAI360、Netwrix Auditor、MetricStream、Wrike、Celoxis、Zoho Projects。 在项目管理中&#xff0c;风险管理不仅是一个挑战&#xff0c;也是保证项目顺利进行的关键…

Linux Redis 服务设置开机自启动

文章目录 前言一、准备工作二、操作步骤2.1 修改redis.conf文件2.2 创建启动脚本2.3 设置redis 脚本权限2.4 设置开机启动2.5 验证 总结 前言 请各大网友尊重本人原创知识分享&#xff0c;谨记本人博客&#xff1a;南国以南i、 提示&#xff1a;以下是本篇文章正文内容&#x…

编程的难点在哪?是逻辑、算法,还是模块、框架的掌握?

&#x1f446;点击关注 回复『新人礼』获取学习礼包&#x1f446; 很多新手程序员在一开始都是满怀热情地投入到编程的学习&#xff0c;但却在学习过程中处处碰壁&#xff0c;导致放弃。 编程的难点在于逻辑、数学、算法&#xff0c;还是模块、框架、接口的掌握&#xff1f;但…

idea Error running ‘Application‘

1、Error running ‘Application’ Error running ApplicationError running Application. Command line is too long.Shorten the command line via JAR manifest or via a classpath file and rerun.找到 .idea/libraies/workspace.xml 中的 PropertiesComponent 属性&#…

大模型赋能全链路可观测性:运维效能的革新之旅

目录 全链路可观测工程与大模型结合---提升运维效能 可观测性&#xff08;Observability&#xff09;在IT系统中的应用及其重要性 统一建设可观测数据 统一建设可观测数据的策略与流程 全链路的构成和监控形态 云上的全链路可视方案 为什么一定是Copilot 大模型的Copilo…

mov和mp4区别是什么?苹果的原创和时代的宠儿

在数字媒体领域&#xff0c;视频格式的选择往往决定了观看体验的质量和文件的兼容性。在众多视频格式中&#xff0c;MOV和MP4无疑是最具代表性的两种&#xff0c;它们分别承载着苹果和互联网世界的技术革新与历史变迁。本文将带您穿越时间的长廊&#xff0c;探索MOV与MP4的发展…

区间DP——AcWing 320. 能量项链

区间DP 定义 区间动态规划&#xff08;Interval Dynamic Programming&#xff09;&#xff0c;简称区间DP&#xff0c;是动态规划领域的一个重要分支&#xff0c;专门用于解决涉及区间问题的最优化问题。这类问题通常需要在给定的一组区间上找到最优解&#xff0c;比如求解最…

福兰农庄携手越南NFC巨头朱雀桥薇妮她百香果饮料,深化品质合作

近日&#xff0c;国内知名果汁品牌福兰农庄成功与越南NFC行业领军者朱雀桥建立深入合作关系。为了进一步提升产品品质和市场竞争力&#xff0c;福兰农庄派遣专业团队前往越南&#xff0c;深入VINUT百香果饮料的生产线&#xff0c;学习其从原料采购到产品上市的严格操作流程。 在…