Linux线程互斥锁

目录

🚩看现象,说原因

🚩解决方案

🚩互斥锁

 🚀关于互斥锁的理解

🚀关于原子性的理解

🚀如何理解加锁和解锁是原子的

🚩对互斥锁的简单封装


引言

大家有任何疑问,可以在评论区留言或者私信我,我一定尽力解答。

今天我们学习Linux线程互斥的话题。Linux同步和互斥是Linux线程学习的延伸。但这部分挺有难度的,请大家做好准备。那我们就正式开始了。

🚩看现象,说原因

我们先上一段代码:

#include<iostream>
#include<pthread.h>
#include<unistd.h>
#include<vector>
#include<cassert>
using namespace std;
int NUM=5;
int ticket=1000;
class pthread
{
public:char buffer[1024];pthread_t id;
};
void *get_ticket(void *args)
{pthread *pth=static_cast<pthread*>(args);while(1){usleep(1234);if(ticket<0){return nullptr;}cout<<pth->buffer<<" is ruuing ticket: "<<ticket<<endl;ticket--;}
}int main()
{vector<pthread*> pthpool;for(int i=0;i<NUM;i++){pthread* new_pth=new pthread();snprintf(new_pth->buffer,sizeof (new_pth->buffer),"thread-%d",i+1);int n=pthread_create(&(new_pth->id),nullptr,get_ticket,new_pth);assert(n==0);(void)n;pthpool.push_back(new_pth);}for(int i=0;i<pthpool.size();i++){int m= pthread_join(pthpool[i]->id,nullptr);assert(m==0);(void)m;}return 0;}

这段代码模拟的是抢票模型,一共有一千张票,我们让几个线程同时去抢票。看看有什么不符合实际的情况发生。

还真有不符合实际的情况发生:竟然抢到了负票。卧槽,这是什么情况,我们赶紧分析一下。

首先,在代码中我们定义了一个全局变量:ticket 。这个变量被所有线程所共享。

对于这种情形,我们直接拉向极端情况:假设此时的票数只有一张了。一个线程进入if内部,但是对票数还没有进行操作,这时,时间片到了,这个线程被切了下去。紧接着,一个线程就通过if判断,顺利抢到了最后一张票,对票数进行了操作。此时已经无票可抢了。这时,那个被切下来的线程又带着它的数据开始了抢票。但是在这个线程看来,票数依旧还有最后一张,所以,它又对票数进行了减减操作,得到了负票。

这种情况显然是不合理的,假如一个电影院有100个座位,结果卖出去102张票,这怎么可以呢?

我们定义的全局变量,在没有保护的情况下,往往晒不安全的。像上面多个线程在交替执行时造成的数据安全问题,我们称之为出现了数据不一致问题

这就是个坑啊,必须解决。

🚩解决方案

在提出解决方案之前,我们先回顾几个概念。

  • 多个执行流进行安全访问的共享资源,叫做临界资源
  • 我们把多个执行流中,访问临界资源的代码叫做临界区,临界区往往是线程代码很小的一部分。
  • 想让多个线程串行访问共享资源的方式叫做互斥
  • 对一个资源进行访问的时候,要么不做,要么做完,这种特性叫做原子性。一个对资源进行的操作,如果只有一挑汇编语句完成,那么就是原子的,反之就不是原则的。这是当前我们对原子性的理解,后面还会发生改变。

 我们提出的解决方案就是加锁。相信大家第一次听到锁。对于什么是锁,如何加锁,锁的原理是什么我们都不清楚,别着急,我们在接下来的内容里会进行详细的详解。

我们先使用一下锁,见见猪跑!!

#include<iostream>
#include<pthread.h>
#include<unistd.h>
#include<vector>
#include<cassert>
using namespace std;
int NUM=5;
int ticket=1000;
pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIZER;
class pthread
{
public:char buffer[1024];pthread_t id;
};
void *get_ticket(void *args)
{pthread *pth=static_cast<pthread*>(args);while(1){  pthread_mutex_lock(&mutex);usleep(1234);if(ticket<0){  pthread_mutex_unlock(&mutex);return nullptr;}cout<<pth->buffer<<" is ruuing ticket: "<<ticket<<endl;ticket--;pthread_mutex_unlock(&mutex);}
}int main()
{vector<pthread*> pthpool;for(int i=0;i<NUM;i++){pthread* new_pth=new pthread();snprintf(new_pth->buffer,sizeof (new_pth->buffer),"user-%d",i+1);int n=pthread_create(&(new_pth->id),nullptr,get_ticket,new_pth);assert(n==0);(void)n;pthpool.push_back(new_pth);}for(int i=0;i<pthpool.size();i++){int m= pthread_join(pthpool[i]->id,nullptr);assert(m==0);(void)m;}return 0;}

 

结果显示抢票的过程非常顺利,接下来,我们把重心指向锁。

🚩互斥锁

 首先,我们先认识一些锁的常见接口

// 所有锁的相关操作函数都在这个头文件下
//这些函数如果又返回值,操作成功的话,返回0,失败的话。返回错误码。错误原因被设置
#include <pthread.h>
// 锁的类型,用来创建锁
pthread_mutex_t
// 对锁进行初始化,第二个参数一般设位null
int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
// 如果这个锁没有用了,可以调用该函数对锁进行销毁
int pthread_mutex_destroy(pthread_mutex_t *mutex);
// 如果创建的锁是全局变量,可以这样初始化。
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
// 对特定代码部分进行上锁,这部分代码只能有一次只能有一个执行流进入,被保护的资源叫做临界资源。
int pthread_mutex_lock(pthread_mutex_t *mutex);
// 尝试上锁,不一定成功。
int pthread_mutex_trylock(pthread_mutex_t *mutex);
// 取消锁。
int pthread_mutex_unlock(pthread_mutex_t *mutex);

刚刚,我们已经使用一种方式实现了加锁,接下来,我们用另一种方式:

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <vector>
#include <cassert>
using namespace std;
int NUM = 5;
int ticket = 1000;
class Thread_Data
{
public:Thread_Data(string name,pthread_mutex_t* mutex):_name(name),_mutex(mutex){}~Thread_Data(){}
public:string _name;pthread_mutex_t*  _mutex;
};
void *get_ticket(void *args)
{Thread_Data *pth = static_cast<Thread_Data*>(args);while (1){pthread_mutex_lock(pth->_mutex); if (ticket > 0){  usleep(1234); cout << pth->_name << " is ruuing ticket: " << ticket << endl;  ticket--;pthread_mutex_unlock(pth->_mutex); } else{pthread_mutex_unlock(pth->_mutex);break;}}
}int main()
{pthread_mutex_t mutex;pthread_mutex_init(&mutex,nullptr);vector<pthread_t> tids(NUM); for (int i = 0; i < NUM; i++){char buffer[1024];Thread_Data *td=new Thread_Data(buffer,&mutex);snprintf(buffer, sizeof(buffer), "user-%d", i + 1);int n =pthread_create(&tids[i], nullptr, get_ticket, td);assert(n == 0);(void)n;}for (int i = 0; i < tids.size(); i++){int m = pthread_join(tids[i], nullptr);assert(m == 0);(void)m;}return 0;
}

 

运行一下,发现一直是4号线程在跑,其他线程呢?我也没让其他线程退出呀!而且抢票的时间变长了。

  • 加锁和解锁是多个线程串行进行的,所以程序允许起来会变得很慢。
  • 锁只规定互斥访问,没有规定谁优先访问。
  • 锁就是让多个线程公平竞争的结果,强者胜出嘛。

 🚀关于互斥锁的理解

  • 所有的执行流都可以访问这一把锁,所以锁是一个共享资源。
  • 加锁和解锁的过程必须是原子的,不会存在中间状态。要么成功,要么失败。加锁的过程必须是安全的。
  • 谁持有锁,谁进入临界区。

 如果一个执行流申请锁成功,继续向后运行;如果申请失败的话,这个执行流怎么办?

这种情况试一试不就知道了。我们依旧使用上面的一份代码,稍稍做一下修改:

 

所以,当一个执行流申请锁失败时,这个执行流会阻塞在这里。


🚀关于原子性的理解

如图,三个执行流

 

问:如果线程1申请锁成功,进入临界资源,正在访问临界资源区的时候,其他线程在做什么?

 答:都在阻塞等待,直到持有锁的线程释放锁。

问; 如果线程1申请锁成功,进入临界资源,正在访问临界资源区的时候,可不可以被切换?

答:绝对是可以的,CPU管你有没有锁呢,时间片到了你必须下来。当持有锁的线程被切下来的时候,

是抱着锁走的,即使自己被切走了,其他线程依旧无法申请锁成功,也就无法继续向后执行。

这就叫作:江湖上没有我,但依旧有我的传说。

所以对于其他线程而言,有意义的锁的状态,无非两种:①申请锁前,②释放锁后

 所以,站在其他线程的角度来看待当前持有锁的过程,就是原子的。

 所以,未来我们在使用锁的时候,要遵守什么样的原则呢?

  • 一定要保证代码的粒度(锁要保护的代码的多少i)要非常小。
  • 加锁是程序员的行为,必须做到要加的话所有的线程必须要加锁。

🚀如何理解加锁和解锁是原子的

 在分析如何实现加锁和解锁之前,我们先形成几个共识:

  • CPU内执行流只有一套,且被所有执行流所共享。
  • CPU内寄存器的内容属线程所有,是每个执行流的上下文。时间片到达,数据带走。
  • 在进行加锁和解锁的时候,这个线程随时会因时间片已到而被换下来。

为了实现互斥锁操作,大多数体系结构都提供了swap或exchange指令,该指令的作用是把寄存器和内存单元的数据相交换,由于只有一条指令,保证了原子性 。

如图:

我们假设有线程A,B两个线程,A想要获得锁 

锁内存储的数据就是int类型的1。 A线程中有数字0。

①:movb $0,%al:将线程A中的1move到寄存器中。此时,是有可能发生时间片到达的,但是寄存器内的数据属于线程A,线程A是要带走的。

②:xchgb %al,mutex:将锁中的数据和寄存器内的数据进行交换。此时寄存器内的数据变成1,锁中的数据变为0。这是关键的一步,也有可能会发生切换。假设不巧的很,A线程被切下去了,B线程被切上来了。B线程从第一步开始,走到现在,寄存器内的数据应该是0。然后进入判断体eles进行挂起等待。

③如果在第二步中线程A被切下来,等待一段时间,时间片再次轮到线程A时,A将自己的数据加载到寄存器内进入判断,然后获得锁。

交换的过程由一条汇编构成

交换的本质:共享的数据,交换到线程的上下文中。 

那么。如何完成解锁的操作呢。解锁的操作特别简单,只需一步。

将寄存器内的1归还给锁。然后return返回就可以了。

🚩对互斥锁的简单封装

相信大家对互斥锁都有了充分的了解。接下来,我们就实现一下对互斥锁的简单封装。

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <vector>
#include <cassert>class Mutex
{
public:Mutex(pthread_mutex_t *mutex) : _mutex(mutex){}void unlock(){if (_mutex){pthread_mutex_unlock(_mutex);}}void lock(){if(_mutex){pthread_mutex_lock(_mutex);}}~Mutex(){}public:pthread_mutex_t *_mutex;
};
class Lockguard
{
public:Lockguard(Mutex mutex) : _mutex(mutex){_mutex.lock();}~Lockguard(){_mutex.unlock();}public:Mutex _mutex;
};

这种利用变量出了函数作用域自动销毁的性质,我们称之为RAII特性。

到这里,我们本篇的内容也就结束了,我们期待下一期博客相遇。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/36689.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CCSP自考攻略+经验总结

备考攻略 备考攻略准备阶段通读阶段精度阶段总复习阶段刷题阶段命运审判 写到最后 备考攻略 趁着对ssp知识点的理解还在&#xff0c;开始ccsp的考证之路&#xff0c;文章结构还是按照cissp备考篇的结构梳理。本次备考和cissp的离职在家备考不同&#xff0c;ccsp是在职利用非工…

如何用亚马逊合作伙伴网络快速上线跨境电商

目前跨境电商已成为行业发展主流&#xff0c;如何快速、低成本打造品牌海外独立站和智能客服营销中心、构建全链路跨境电商体系是出海电商商家都会遇到的难题。亚马逊云科技凭借与亚马逊电商平台易于集成的先天优势成为首选的电商解决方案平台。本文介绍了如何用亚马逊云科技平…

Elasticsearch8.x聚合查询全面指南:从理论到实战

聚合查询的概念 聚合查询&#xff08;Aggregation Queries&#xff09;是Elasticsearch中用于数据汇总和分析的查询类型。它不同于普通的查询&#xff0c;而是用于执行各种聚合操作&#xff0c;如计数、求和、平均值、最小值、最大值、分组等。 聚合查询的分类 分桶聚合&…

centos7 安装单机MongoDB

centos7安装单机 yum 安装 1、配置yum源 vim /etc/yum.repos.d/mongodb.repo [mongodb-org-7.0] nameMongoDB Repository baseurlhttps://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/7.0/x86_64/ gpgcheck1 enabled1 gpgkeyhttps://www.mongodb.org/static/pgp…

未来已来,如何打造智慧养殖场?

近年来&#xff0c;国家出台了一系列扶持政策&#xff0c;以促进养殖行业高质量发展&#xff0c;推动行业转型升级。在国家政策和市场需求的双重驱动下&#xff0c;养殖行业正迎来前所未有的发展机遇。智慧养殖以其高效、智能和可持续的特点&#xff0c;正逐步取代传统养殖方式…

6.26.4.1 基于交叉视角变换的未配准医学图像多视角分析

1. 介绍 许多医学成像任务使用来自多个视图或模式的数据&#xff0c;但很难有效地将这些数据结合起来。虽然多模态图像通常可以在神经网络中作为多个输入通道进行配准和处理&#xff0c;但来自不同视图的图像可能难以正确配准(例如&#xff0c;[2])。因此&#xff0c;大多数多视…

吴恩达2022机器学习专项课程C2W3:2.27 选修_数据倾斜

目录 处理不平衡数据集1.分类需求描述2.计算精确率和召回率 权衡精确率和召唤率1.手动调整阈值2.F1分数 总结 处理不平衡数据集 1.分类需求描述 如果你在处理一个机器学习应用&#xff0c;其中正例和负例的比例&#xff08;用于解决分类问题&#xff09;非常不平衡&#xff0…

数据库怎么同步

数据库要怎么同步呢&#xff0c;有很多方法&#xff0c;看你用什么数据库&#xff0c;如果是Sqlserver,你要数据库同步&#xff0c;那么可以使用自带的订阅发布&#xff0c;订阅发布应该是不错的方法&#xff0c;但是我上次要配置双向同步&#xff0c;它的对等发布好像没部署成…

Ansible-综合练习-生产案例

斌的招儿 网上教程大多都是官网模板化的教程和文档&#xff0c;这里小斌用自己实际生产环境使用的例子给大家做一个详解。涉及到一整套ansible的使用&#xff0c;对于roles的使用&#xff0c;也仅涉及到tasks和files目录&#xff0c;方便大家快速上手并规范化管理。 0.环境配置…

聚星文社AI工具

聚星文社AI工具是一种基于人工智能技术开发的工具&#xff0c;旨在辅助作者和写作人员提升创作效率和质量。 点击下载 该工具可以提供多项功能&#xff0c;包括语法纠错、智能推荐、文章自动摘要等。 通过使用聚星文社AI工具&#xff0c;用户可以在写作过程中得到即时的纠错建…

ECMAScript6介绍及环境搭建

这实际上说明&#xff0c;对象的解构赋值是下面形式的简写。 let { foo: foo, bar: bar } { foo: ‘aaa’, bar: ‘bbb’ }; 也就是说&#xff0c;对象的解构赋值的内部机制&#xff0c;是先找到同名属性&#xff0c;然后再赋给对应的变量。真正被赋值的是后者&#xff0c;而…

数据结构_绪论

1.数据结构的研究内容 研究数据的特性和数据之间的关系 用计算机解决一个问题的步骤 1.具体问题抽象成数学模型 实质: 分析问题--->提取操作对象--->找出操作对象之间的关系(数据结构)--->用数学语言描述 操作对象对象之间的关系 2.设计算法 3.编程,调试,运行 …

【数据结构与算法】哈希函数 详解

哈希函数的构造方法有哪些&#xff1f; 直接定址法&#xff1a;直接使用关键字或者关键字的某个线性函数值作为哈希地址。 数字分析法&#xff1a;对关键字进行分析&#xff0c;选择关键字中的某几位或者进行某种运算得到的结果作为哈希地址。 平方取中法&#xff1a;先计算关…

通信协议总结

IIC 基本特点 同步&#xff0c;半双工 标准100KHz&#xff0c;最高400KHz&#xff08;IIC主要应用于低速设备&#xff09; 硬件组成 需外接上拉电阻 通信过程 空闲状态 SDA和SCL都处于高电平 开始信号S和终止信号P 在数据传输过程中&#xff0c;当SCL0时&#xff0c;SDA才…

十常侍乱政 | 第2集 | 愿领精兵五千,斩关入内,册立新君,诛杀宦党,扫清朝廷,以安天下 | 三国演义 | 逐鹿群雄

&#x1f64b;大家好&#xff01;我是毛毛张! &#x1f308;个人首页&#xff1a; 神马都会亿点点的毛毛张 &#x1f4cc;这篇博客是毛毛张分享三国演义文学剧本中的经典台词和语句&#xff0c;本篇分享的是《三国演义》第Ⅰ部分《群雄逐鹿》的第2️⃣集《十常侍乱政治》&am…

汇聚荣做拼多多运营第一步是什么?

汇聚荣做拼多多运营第一步是什么?在众多电商平台中&#xff0c;拼多多凭借其独特的社交电商模式迅速崛起&#xff0c;吸引了大量消费者和商家的目光。对于希望在拼多多上开店的商家而言&#xff0c;了解如何进行有效运营是成功的关键。那么&#xff0c;汇聚荣做拼多多运营的第…

算法入门:二分查找及其Java实现

在程序开发中&#xff0c;算法是解决问题的核心。本篇博客将详细讲解一种高效的查找算法——二分查找&#xff0c;并通过Java代码示例帮助你理解其实现和应用。 如果你觉得这篇文章对你有帮助&#xff0c;不要忘记点赞、收藏和关注我&#xff0c;这将是对我最大的支持和鼓励&am…

VMware 最新的安全漏洞公告VMSA-2024-0013

#深度好文计划# 一、摘要 2024年6月26日&#xff0c;VMware 发布了最新的安全漏洞公告 VMSA-2024-0013&#xff0c;修复了 VMware ESXi 和 VMware vCenter 中的多个安全漏洞。 VMSA-2024-0013&#xff1a;VMware ESXi 和 vCenter Server 更新修正了多个安全性漏洞 &#xff…

Unity3D 物体的运动

运动方式1 修改 position / localPosition &#xff0c;可以让物体运动 例如&#xff0c; Vector3 pos this.transform.localPosition; pos.z distance; this.transform.localPosition pos; 此时&#xff0c;小车向Z 方向运动 具体代码如下 using System.Collection…