【ISAC】通感一体化讲座(刘凡)

高斯信道下通信感知一体化的性能极限(刘凡)

文章目录

    • 背景

在这里插入图片描述
在这里插入图片描述

背景

在这里插入图片描述
通信和感知在硬件结构上相似,高效地利用资源,实现相互的增益;
在这里插入图片描述
感知是基于不同的任务,比如目标检测(检测概率,虚警概率),估计任务(从收到的信号中去估计有用的参数,均方误差,CRB),识别(知道目标的语义信息,就是目标分类,识别准确率),这些感知指标基本都是可靠性指标,感知的结果难以量化成一个比特,所以我们不去讨论感知的有效性。
在这里插入图片描述
考虑估计指标,估计参数, E { ( η − η ^ ) ( η − η ^ ) T } ⩾ J − 1 = { E [ ∂ 2 ln ⁡ p ( Y , η ) ∂ η ∂ η T ] } − 1 \mathbb{E}\Big\{(\mathbf{\eta}-\mathbf{\hat{\eta}})(\mathbf{\eta}-\mathbf{\hat{\eta}})^{\mathrm{T}}\Big\}\geqslant\mathbf{J}^{-1}=\Big\{\mathbb{E}\left[\frac{\partial^{2}\ln p(\mathbf{Y},\mathbf{\eta})}{\partial\mathbf{\eta}\partial\mathbf{\eta}^{\mathrm{T}}}\right]\Big\}^{-1} E{(ηη^)(ηη^)T}J1={E[ηηT2lnp(Y,η)]}1,估计的参数是 η \eta η(比如距离、速度和角度等),比如发射一个信号打到一个目标上,返回的信号就携带了关于这个目标信息。信号记作 Y \mathbf{Y} Y,服从一定概率的随机变量, η \eta η也是随机变量(列向量),拿到 Y \mathbf{Y} Y η \eta η作估计,记作 η ^ \hat{\eta} η^, 求MSE即 E { ( η − η ^ ) ( η − η ^ ) T } \mathbb{E}\Big\{(\mathbf{\eta}-\mathbf{\hat{\eta}})(\mathbf{\eta}-\mathbf{\hat{\eta}})^{\mathrm{T}}\Big\} E{(ηη^)(ηη^)T},统计里MSE有下界,下界就是CRB(CRB是感知的性能极限),CRB的PDF越尖,包含目标的信息就越多,它的逆就是误差的bound(CRB的PDF多尖定义为Fisher Information,Fisher Information是联合分布 p ( Y , η ) p(\mathbf{Y},\mathbf{\eta}) p(Y,η),为什么是联合分布,这是一个贝叶斯的CRB),联合分布 p ( Y , η ) p(\mathbf{Y},\mathbf{\eta}) p(Y,η) η ) \mathbf{\eta}) η)求二阶导取期望, [ ∂ 2 ln ⁡ p ( Y , η ) ∂ η ∂ η T ] \left[\frac{\partial^{2}\ln p(\mathbf{Y},\mathbf{\eta})}{\partial\mathbf{\eta}\partial\mathbf{\eta}^{\mathrm{T}}}\right] [ηηT2lnp(Y,η)]叫Hessian矩阵(海森矩阵,Hessian矩阵求期望就是Fisher信息矩阵),海森矩阵求期望再取逆叫做CRB matrix,矩阵 { ( η − η ^ ) ( η − η ^ ) T } \Big\{(\mathbf{\eta}-\mathbf{\hat{\eta}})(\mathbf{\eta}-\mathbf{\hat{\eta}})^{\mathrm{T}}\Big\} {(ηη^)(ηη^)T}在半正定意义上大于等于Hessian矩阵的逆,对 { ( η − η ^ ) ( η − η ^ ) T } \Big\{(\mathbf{\eta}-\mathbf{\hat{\eta}})(\mathbf{\eta}-\mathbf{\hat{\eta}})^{\mathrm{T}}\Big\} {(ηη^)(ηη^)T}求迹tra,将所有误差加起来,CRB一般是 { E [ ∂ 2 ln ⁡ p ( Y , η ) ∂ η ∂ η T ] } − 1 \Big\{\mathbb{E}\left[\frac{\partial^{2}\ln p(\mathbf{Y},\mathbf{\eta})}{\partial\mathbf{\eta}\partial\mathbf{\eta}^{\mathrm{T}}}\right]\Big\}^{-1} {E[ηηT2lnp(Y,η)]}1求trace。
一般的CRB中 η \eta η是确定变量, p ( Y , η ) p(\mathbf{Y},\mathbf{\eta}) p(Y,η)会变成似然函数(可以这样理解,观测数据和参数的联合分布,当其中一个给定,为了使得PDF最大,去优化另外一个,都是优化似然函数)。

半正定 (positive semidefinite)矩阵表示一个对称矩阵,其所有特征值都非负。
这意味着,对于任意非意 x \mathfrak{x} x,都有:
x T ( E { ( η − η ^ ) ( η − η ^ ) T } − J − 1 ( η ) ) x ≥ 0 \mathbf{x}^T\left(\mathbb{E}\Big\{(\eta-\hat{\eta})(\eta-\hat{\eta})^\mathrm{T}\Big\}-\mathbf{J}^{-1}(\eta)\Big)\mathbf{x}\geq0\right. xT(E{(ηη^)(ηη^)T}J1(η))x0
在这里插入图片描述
下面讨论性能极限(通信人的传统),研究一个新的通信系统第一步先搞清楚性能极限,两个极限:速率和CRB,此时性能极限就不是一个点了,而是一个边界,相当于2元的优化问题。速率和CRB如果同时达到最优(CRB最小,Rate达到最大,为Bound B矩形边界,意味着通信和感知之间没有任何矛盾),Bound A是Time sharing可以达到的界,最优的CRB在左下工作点概率是P1,最高的rate在右上工作点概率是P2,P1+P2=1,概率变化就可以得到Bound A直线,这条线叫做分时内界(time sharing inner bound),代表资源上通信和感知正交分配的情况(通信和感知没有共享资源)。一个比较实际的折中就是Bound C,通信和感知有一部分资源是共享的。
在这里插入图片描述
如何分配通信和感知的资源:通信和感知有不同的评价指标,对资源的分配和调度就有不同的侧重点。比如正交分配(在时间、频谱或者波束上分配通信和感知,时分、频分和空分)。另外是一体化波形,会得到Bound C,如何找到Bound C并且逼近。
在这里插入图片描述
找到这条界:ISAC信道分为3种,1)强耦合:通信的目标也是感知的目标;2)中度耦合:感知和通信分成两条径都被手机接受;3)弱耦合:通信和感知的两个目标在物理上隔得很远。三种耦合程度部分决定了边界的形状。
在这里插入图片描述
强耦合,抽象成两个subspace,两个subspace方向相同,朝一个方向打,通信和感知完全复用。中度耦合,复用就是各自的投影。弱耦合,两个空间正交,不得不正交分配资源,资源没办法复用。
如果考虑一个简单的beamforming问题,对于某个目标角度的CRB的优化,通信速率满足一个门限和一个功率的约束。
在这里插入图片描述
在这里插入图片描述
向量高斯信道,MIMO或者OFDM信道
感知接收机和发射机是否分开:
自发自收,一个通信用户,一个或者多个Target,ISAC的发射机,感知接收机。
发和收分开,但是中间可以用光纤连接,接受合作。
Y c = H c X + Z c , Y s = H s ( η ) X + Z s \mathbf{Y}_\mathrm{c}=\mathbf{H}_\mathrm{c}\mathbf{X}+\mathbf{Z}_\mathrm{c},\mathbf{Y}_\mathrm{s}=\mathbf{H}_\mathrm{s}(\mathbf{\eta})\mathbf{X}+\mathbf{Z}_\mathrm{s} Yc=HcX+Zc,Ys=Hs(η)X+Zs其中 Y c \mathbf{Y}_\mathrm{c} Yc是通信接收信号, Y s \mathbf{Y}_\mathrm{s} Ys是感知接收信号; X \mathbf{X} X是一个unified waveform,随机变量(只有随机信号才能携带信息);样本协方差矩阵,假设有N个天线,一个block的长度是T, X \mathbf{X} X就是一个N×T的矩阵(或者对应OFDM中N个OFDM符号,每个符号有T个子载波), X \mathbf{X} X的共轭转置/T就是样本协方差矩阵;求期望就是统计协方差矩阵。
在这里插入图片描述
一些重要的假设:
雷达的感知,感知的目标不能发射信号;
ISAC信号 X \mathbf{X} X对于感知接收机是已知的,因为在自发自收和发和收分开两种场景下,都是连接的。但是对通信接收机是未知的。
η \mathbf{\eta} ηIId,每T个symbol,iid地变化一次。
通信的channel, H c \mathbf{H}_\mathrm{c}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/36604.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Str.format()方法

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 语法参考 在Python2.6之后,提供了字符串的format()方法对字符串进行格式化操作。format()功能非常强大,格式也比较复杂&…

基于ADRC自抗扰算法的UAV飞行姿态控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 控制系统概述 4.2 ADRC基本框架 4.3 控制律设计 5.完整工程文件 1.课题概述 基于ADRC自抗扰算法的UAV飞行姿态控制系统simulink建模与仿真,分别对YAW,PITCH,ROL…

K-Means 算法详解

K-Means 是一种常用的无监督学习算法,广泛应用于数据聚类分析。本文将详细讲解 K-Means 算法的原理、步骤、公式以及 Python 实现,帮助你深入理解这一经典算法。 什么是 K-Means 算法? K-Means 算法是一种基于原型的聚类算法,其…

Linux分区以及磁盘管理

目录 一、磁盘 1.磁盘结构 1.1物理结构 1.2数据结构 2.1磁盘容量 2.2磁盘接口类型 2.磁盘分区的表示 3.MBR与磁盘分区表示 4.磁盘分区结构 二、文件系统 1、类型 三、命令 1.检测并确认新硬盘 2.创建系统文件(格式化) 2.1mkfs命令 2.2SWAP 3.挂载、卸载文件系统…

Simulink中三相PMSM配置及使用

1. 模块介绍 Simulink提供了专门用于电力系统仿真,包括电机的动态建模和控制的电机模型,其中,永磁同步电机模块 Permanent Magnet Synchronous Machine 支持实现三相或五相永磁同步电机模拟,电机绕组采用星型连接,在这…

【图像分类】Yolov8 完整教程 |分类 |计算机视觉

目标:用YOLOV8进行图像分类。 图像分类器。 学习资源:https://www.youtube.com/watch?vZ-65nqxUdl4 努力的小巴掌 记录计算机视觉学习道路上的所思所得。 1、文件结构化 划分数据集:train,val,test 知道怎么划分数据集很重要。 文件夹…

应用图扑 HT for Web 搭建拓扑关系图

拓扑结构在计算机网络设计和通信领域中非常重要,因为它描述了网络中的设备(即“点”)如何相互连接(即通过“线”)。这种结构不仅涉及物理布局,即物理拓扑,还可以涉及逻辑或虚拟的连接方式&#…

【系统架构设计师】计算机组成与体系结构 ③ ( 层次化存储结构 | 寄存器 | 高速缓存 | 内存 | 外存 )

文章目录 一、层次化存储结构1、层次化存储结构2、层次化存储结构 - 示例说明3、程序员可操作的部分 计算机 采用 分级存储结构 , 主要目的是 为了 解决 容量 / 价格 / 速度 之间的矛盾 ; 一、层次化存储结构 1、层次化存储结构 计算机 存储器 按照存储速度 由快到慢 进行排序 …

吐血推荐!3款视频生成工具,全部国产,都免费

AI视频大模型的爆发,让创作爆款视频不再是专业人士的能力。 今天二师兄给大家推荐3款免费的视频生成工具。 01 可灵 推荐指数 : 五颗星 先看效果 可灵大模型测试 可灵大模型是快手AI团队自主研发的视频生成大模型,具备强大的视频创作能力&a…

教程:在 Kubernetes 集群上部署 WordPress 网站

WordPress 是专为每个人设计的开源软件,强调创建网站、博客或应用程序的可访问性、性能、安全性和易用性。WordPress 是一个基于 PHP 的内容管理系统(CMS),使用 MySQL 作为数据存储,目前很多网站、电商独立站、个人博客…

推荐系统三十六式学习笔记:原理篇.模型融合14|一网打尽协同过滤、矩阵分解和线性模型

目录 从特征组合说起FM模型1.原理2.模型训练3.预测阶段4.一网打尽其他模型5.FFM 总结 在上一篇文章中,我们讲到了使用逻辑回归和梯度提升决策树组合的模型融合办法,用于CTR预估,给这个组合起了个名字,叫“辑度组合”。这对组合中&…

个人支付系统实现

基础首页: 订单: 智能售卡系统 基于webmanworkerman开发 禁用函数检查 使用这个脚本检查是否有禁用函数。命令行运行curl -Ss https://www.workerman.net/check | php 如果有提示Function 函数名 may be disabled. Please check disable_functions in …

线程池FutureTask浅谈

一,概述 FuturnTask实现了Future与Runnable接口,笔者知道,ThreadPoolExecutor#submit可以传入Callable接口而非Runnable,区别点在于Callable可以返回值,而整个FuturnTask可以理解为Callable设计,用来优雅地异步获取执行结果,无需手动Condition去实现。 围绕此,需知道…

鸿蒙开发系统基础能力:【@ohos.wallpaper (壁纸)】

壁纸 说明: 本模块首批接口从API version 7开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import wallpaper from ohos.wallpaper;WallpaperType 定义壁纸类型。 系统能力: 以下各项对应的系统能力均为SystemCapability…

【项目实训】falsk后端连接数据库以及与前端vue进行通信

falsk连接数据库 我们整个项目采用vueflaskmysql的框架,之前已经搭建好了mysql数据库,现在要做的是使用flask连接到数据库并测试 安装flask 首先安装flask pip install flask 进行数据库连接 数据库连接需要使用到pymysql库以及flask库 连接数据库…

Linux-引导过程与服务控制

目录 一、Linux操作系统引导过程 1、引导过程总览 2、引导过程详解 2.1、开机自检(BIOS) 2.2、 MBR引导 2.3、GRUB菜单 2.4、加载内核(kernel) 2.5、init进程初始化 3、系统初始化进程 3.1、Systemd单元类型 3.2、运行级别所对应的 Systemd 目…

SherlockChain:基于高级AI实现的智能合约安全分析框架

关于SherlockChain SherlockChain是一款功能强大的智能合约安全分析框架,该工具整合了Slither工具(一款针对智能合约的安全工具)的功能,并引入了高级人工智能模型,旨在辅助广大研究人员针对Solidity、Vyper和Plutus智…

前端 Array.sort() 源码学习

源码地址 V8源码Array 710行开始为sort()相关 Array.sort()方法是那种排序呢&#xff1f; 去看源码主要是源于这个问题 // In-place QuickSort algorithm. // For short (length < 22) arrays, insertion sort is used for efficiency.源码中的第一句话就回答了我的问题…

Potato(土豆)一款轻量级的开源文本标注工具(二)

示例项目&#xff08;模版&#xff09; Potato 旨在提高数据标注的可复制性&#xff0c;并降低研究人员设置新标注任务的成本。因此&#xff0c;Potato 提供了一系列预定义的示例项目&#xff0c;并欢迎公众向项目中心贡献。如果您使用 Potato 进行了自己的标注工作&#xff0…

海思平台使用ITTP_Stream调试sensor

目录 相关资料1.ISP相关资料2.MIPI RX相关资料3.sensor资料4.MIPI标准 准备工作1.准备sensor驱动2.准备sample vio3.准备上位机和下位机程序 运行1.只运行HiPQTool1.1.板端运行1.2.PC端运行HiPQTool 2.使用ITTP_Stream2.1.板端运行2.2.打开上位机软件 相关资料 1.ISP相关资料 …