1、线性回归模型

1、主要解决问题类型

1.1 预测分析(Prediction)

线性回归可以用来预测一个变量(通常称为因变量或响应变量)的值,基于一个或多个输入变量(自变量或预测变量)。例如,根据房屋的面积、位置等因素预测房价。

1.2 异常检测(Outlier Detection)

线性回归可以帮助识别数据中的异常值。异常值可能会影响回归模型的准确性,因此检测和处理异常值是线性回归分析的重要一环。

1.3 关联分析(Association)

线性回归可以帮助确定两个或多个变量之间的关系强度和方向。它可以显示自变量与因变量之间是正相关还是负相关,以及相关性的强度。

2、线性回归模型

2.1 什么是线性回归模型

模型表达式:在这里插入图片描述

  • y 是因变量(要预测的目标)
  • x1,x2,…,xp 是自变量(特征或解释变量)
  • β0,β1,…,βp 是模型的参数,表示因变量与自变量之间的影响关系
  • ϵ 是误差项,表示模型无法解释的随机误差。

2.2 如何判断某个问题是否适合使用线性回归模型?

  1. 线性关系假设:线性回归模型假设因变量与自变量之间的关系是线性的。因此,首先需要检验自变量和因变量之间是否存在大致的线性关系。可以通过绘制散点图观察变量之间的关系来初步判断。
  2. 连续性和正态性假设:线性回归模型通常假设自变量和因变量是连续的,并且误差项 ϵ 是独立同分布的,并且服从正态分布。如果数据违反这些假设,可能需要考虑其他类型的模型。
  3. 数据量:通常来说,线性回归对数据量的要求并不高,但是如果数据量非常少或者变量之间的关系非常复杂,可能需要考虑更复杂的模型。
  4. 预测的需求:如果任务是预测一个连续的数值型目标变量,而且认为这些预测可以通过自变量的线性组合来实现,那么线性回归也是一个合适的选择。

2.3 NILM中的线性回归模型

2.3.1 负载识别问题

在NILM中,负载识别是一个核心问题,即通过总电力消耗数据来识别和分离出各个电器的能耗。线性回归模型可以应用于以下情况:

问题描述: 根据总电力消耗(因变量)和不同电器的特征(自变量,如电流波形、功率特征等),建立线性回归模型来预测每个电器的能耗。

实际案例: 假设我们有一个家庭的总电力消耗数据以及每个电器在不同时间段内的功率特征。我们可以利用线性回归模型来拟合这些数据,从而识别出在该家庭中运行的各种电器,比如冰箱、空调、洗衣机等。

求解过程如下

1. 数据的收集与准备

首先,我们需要收集如下数据:

  • 总电力消耗数据: 在监测点(例如家庭电表)上采集的总电力消耗时间序列数据。
  • 各个电器的特征数据: 这些特征数据可以包括电器的功率特性、波形数据(如电流波形)、电压特征等。这些数据通常是通过传感器或NILM系统采集的。

2. 模型设定

在这里插入图片描述

  • P(t) 是在时刻 𝑡 的总电力消耗
  • Xi(t) 是第 𝑖 个电器的特征数据,如功率特征
  • βi 是模型的系数,表示第 𝑖 个电器的能耗
  • ϵ(t) 是误差项,表示模型无法解释的随机误差。

3. 模型拟合

接下来的步骤是通过拟合模型来估计系数 𝛽𝑖,这里使用最小二乘法来优化模型参数。
假设我们有以下数据:
在这里插入图片描述
我们可以将数据集分为训练集和测试集,然后按照上述步骤建立线性回归模型。例如,可以使用Python中的Scikit-Learn库来实现:

from sklearn.linear_model import LinearRegression
import numpy as np# 假设已经有了总电力消耗数据 P 和电器特征数据 X# 创建线性回归模型
model = LinearRegression()# 拟合模型
model.fit(X, P)# 打印模型系数(电器的能耗)
print("Coefficients (beta):", model.coef_)
print("Intercept (beta_0):", model.intercept_)

4. 模型评估与验证

完成模型拟合后,需要对模型进行评估和验证:

  • 评估模型拟合度: 通过比较模型预测的总电力消耗与实际观测值之间的差异来评估模型的拟合度。
  • 验证识别准确性: 使用未见过的数据集来验证模型的负载识别能力,即模型是否能够准确识别和分离不同电器的能耗。
2.3.1.1 简单的负载识别(使用线性回归模型)

1. 数据准备

  • P 是总电力消耗数据,假设是一个长度为 n 的 numpy 数组。
  • X1 和 X2 是两个电器的功率特征数据,每个也是长度为 n 的 numpy 数组。

2. 特征矩阵X的构建

  • 使用 np.vstack 将每个电器的特征数据堆叠为一个矩阵,每列对应一个电器的特征数据。
  • 使用 .T 进行转置,以确保每行对应相同时间点的数据。

3. 模型拟合

  • 创建 LinearRegression 对象,并使用 fit 方法拟合模型,将 X 作为自变量,P 作为因变量。

4.模型系数

  • model.coef_ 返回每个电器的能耗系数(即模型的斜率)。
  • model.intercept_ 返回模型的截距项(即 β0)。

代码实现如下:

import numpy as np
from sklearn.linear_model import LinearRegression# 假设有以下数据:
# 总电力消耗数据 P,假设是一个长度为 n 的 numpy 数组
P = np.array([100, 150, 200, 180, 210])# 电器特征数据 X,假设有两个电器,每个电器的特征数据也是长度为 n 的 numpy 数组
X1 = np.array([20, 30, 40, 35, 45])  # 电器1的功率特征
X2 = np.array([15, 25, 30, 20, 28])  # 电器2的功率特征# 将电器特征数据整合成一个特征矩阵 X,每一列对应一个电器的特征数据
X = np.vstack([X1, X2]).T  # 转置是为了确保每行对应同一个时间点的数据# 创建并拟合线性回归模型
model &#

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/35983.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙开发系统基础能力:【@ohos.systemTime (设置系统时间)】

设置系统时间 本模块用来设置、获取当前系统时间,设置、获取当前系统日期和设置、获取当前系统时区。 说明: 本模块首批接口从API version 7开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import systemTime …

沙盒在数据防泄密领域意义

在信息化快速发展的今天,数据已成为企业最宝贵的资产之一。然而,数据泄密事件频发,给企业的安全和发展带来了巨大威胁。SDC沙盒防泄密系统,作为一种创新的数据防泄密解决方案,正逐渐在数据防泄密领域发挥着越来越重要的…

安装zabbix时报错Could not resolve host: mirrors.huaweicloud.com;Unknown error解决办法

目录 1、问题原因 2、解决办法 3、知识拓展 DNS的区别 DNS配置文件解析 域名解析过程 4、书籍推荐 当安装Zabbix server,Web前端,agent时出现: [rootsc-zabbix-server ~]# yum install zabbix-server-mysql zabbix-agent安装过程中会出…

Python3极简教程(一小时学完)上

开始 Python 之旅 本教程基于 Python for you and me 教程翻译制作,其中参考了 Python tutorial 和 _The Python Standard Library_,并对原教程的内容进行了改进与补充。 相关链接地址如下: _Python tutorial_:Python 入门指南…

数字孪生流域:定义、组成等

数字孪生流域:定义、组成等 1 数字孪生流域(Digital Twin Basin/Watershed)总则1.1 定义1.2 适用范围1.3 建设目标1.4 建设原则 2 数字孪生流域框架与组成2.1 数字孪生流域框架2.2 数字孪生流域组成2.2.1 数字孪生平台2.2.2 信息化基础设施 3…

JavaScript学习笔记(二)

12、数字 常规用法和java的用法相似,就不再做详细的记录, JavaScript 数字 以下只记录特殊用法: 12.1 数字字符串运算 在所有数字运算中,JavaScript 会尝试将字符串转换为数字: var x "100"; var y "10"…

第 5 章理解 ScrollView 并构建 Carousel UI

通过上一章的学习,我相信你现在应该明白如何使用堆栈构建复杂的 UI。当然,在你掌握 SwiftUI 之前,你还需要大量的练习。因此,在深入研究 ScrollView 以使视图可滚动之前,让我们先以一个挑战开始本章。你的任务是创建一个类似于图 1 所示的卡片视图。 …

swp添加池子addLiquidity失败

案发现场 首次添加交易对、一直失败、但是也没提示具体的原因。到这一步就没了、由下图可知、也没看到log、由此可见第一步就失败了。 解决方案 一、添加 工厂KywFactory 添加如下 bytes32 public constant INIT_CODE_PAIR_HASH keccak256(abi.encodePacked(type(KywPair…

注意!短视频的致命误区,云微客教你避开!

为什么你做短视频就是干不过同行?因为你总想着拍剧情、段子这些娱乐视频,还想着当网红做IP人设,但是这些内容跟你的盈利没有半毛钱关系,况且难度大、见效慢,还不是精准客户。 以上这些就代表你走进了短视频的误区&…

C++初学者指南-2.输入和输出---流输入和输出

C初学者指南-2.输入和输出—流输入和输出 文章目录 C初学者指南-2.输入和输出---流输入和输出1.定制输入/输出1.1 示例:点坐标输入/输出1.2 流操作符1.3(一部分)标准库流类型 2. 工具2.1 用getline读取行 2.2 用ignore进行跳转2.3 格式化操作…

【论文阅读】-- Temporal Summary Images:通过交互式注释生成和放置实现叙事可视化的方法

Temporal Summary Images: An Approach to Narrative Visualization via Interactive Annotation Generation and Placement 摘要1 引言2 背景及相关工作2.1 叙事可视化和讲故事2.2 显示面向时间的数据2.3 小倍数和漫画2.4 注释可视化 3 设计要求和工作流程3.1 工作流程3.2 TSI…

基线核查--渗透

基线检查 基线核查概念 it中定义: 基线为初始的标准,以后更改就要经过授权,形成下一基线。 软件配置管理的基线:1功能基线,分配基线,产品基线 安全配置基线--基线核查 安全基线可以说是木桶理论&…

【python】eval函数

1.eval函数的语法及用法 (1)语法:eval(expression) 参数说明: expression:必须为字符串表达式,可为算法,也可为input函数等。 说明:表达式必需是字符串,否则会报错&a…

Vue3-尚硅谷笔记

1. Vue3简介 2020年9月18日,Vue.js发布版3.0版本,代号:One Piece(n 经历了:4800次提交、40个RFC、600次PR、300贡献者 官方发版地址:Release v3.0.0 One Piece vuejs/core 截止2023年10月,最…

Dubbo运行原理

目录 Dubbo通讯协议 Dubbo负载均衡策略 RPC和HTTP有什么区别? 让你设计一个RPC框架,如何考虑数据序列化问题? Dubbo 是一款高性能、轻量级的开源 RPC(远程过程调用)框架,主要用于构建分布式服务和微服务…

springcloud第4季 springcloud-alibaba之openfegin+sentinel整合案例

一 介绍说明 1.1 说明 1.1.1 消费者8081 1.1.2 openfegin接口 1.1.3 提供者9091 9091微服务满足: 1 openfegin 配置fallback逻辑,作为统一fallback服务降级处理。 2.sentinel访问触发了自定义的限流配置,在注解sentinelResource里面配置…

基于SpringBoot的学生综合测评系统

你好呀,我是计算机学姐码农小野!如果有相关需求,可以私信联系我。 开发语言:Java 数据库:MySQL 技术:SpringBoot框架 工具:MyEclipse、Tomcat 系统展示 首页 系统首页,提供综合…

After Effects 2024 mac/win版:创意视效,梦想起航

After Effects 2024是一款引领视效革命的专业软件,汇聚了创意与技术的精华。作为Adobe推出的全新版本,它以其强大的视频处理和动画创作能力,成为从事设计和视频特技的机构,如电视台、动画制作公司、个人后期制作工作室以及多媒体工…

求职产品运营的个人简历案例(精选篇)

在求职产品运营的道路上,一份出色的个人简历是迈向成功的第一步,但是简历怎么写才最好呢?下面是小编整理的求职产品运营的个人简历案例,同时,幻主简历网还提供精美简历模板下载和简历在线制作工具,欢迎大家…

meizu M10 魅蓝 10 mblu10 root 解锁 安装LSPosed框架 紫光展锐改串 AT命令 一键新机 改机软件 硬改 改参数

meizu M10 魅蓝 10 mblu10 root 解锁 安装LSPosed框架 紫光展锐改串 AT命令 一键新机 改机软件 硬改 改参数 ro.system.build.version.release11 ro.system.build.version.release_or_codename11 ro.system.build.version.sdk30 ro.system.custom.versionAndroid_M01 ro.prod…