YOLOv8-pose针对视频实时提取打印对应关节点序号及坐标

因为我在找如何提取YOLOv8-pose的关键点的时候,大多都是针对静态图像,视频直接套用不太行,因此就改进了一下,如下:

初步代码:

import torch  # 导入PyTorch库
import cv2 as cv  # 导入OpenCV库并重命名为cv
import numpy as np  # 导入NumPy库并重命名为np
from ultralytics.data.augment import LetterBox  # 从ultralytics.data.augment中导入LetterBox类
from ultralytics.utils import ops  # 从ultralytics.utils中导入ops模块
from ultralytics.engine.results import Results  # 从ultralytics.engine.results中导入Results类
import copy  # 导入copy模块# 视频路径
video_path = 'D:/cs/yolov8_2/ultralytics/ceshi1.mp4'  # 将此处路径改为你的视频文件路径
device = 'cuda:0'  # 设备类型,此处使用CUDA
conf = 0.25  # 置信度阈值
iou = 0.7  # IoU(交并比)阈值# 加载视频
cap = cv.VideoCapture(video_path)# 检查视频是否成功打开
if not cap.isOpened():print("Error: Could not open video.")  # 打印错误消息exit()  # 退出程序# 加载模型
ckpt = torch.load('yolov8n-pose.pt', map_location='cpu')  # 加载模型参数
model = ckpt['model'].to(device).float()  # 将模型加载到指定设备(CPU或GPU)并转换为浮点数类型
model.eval()  # 将模型设置为评估模式results = []  # 存储结果的列表while True:ret, frame = cap.read()  # 读取视频帧# 如果没有读取到帧或者视频结束,则退出循环if not ret:breakorig_img = frame  # 原始图像# 预处理im = [orig_img]  # 图像列表im = [LetterBox([640, 640], auto=True, stride=32)(image=x) for x in im]  # 对图像进行LetterBox缩放im = im[0][None]  # 转换为数组形式im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR转RGB,BHWC转BCHWim = np.ascontiguousarray(im)  # 转换为连续的内存布局im = torch.from_numpy(im)  # 将数组转换为PyTorch张量img = im.to(device)  # 将张量移动到指定设备img = img.float()  # 转换为浮点数类型img /= 255  # 归一化# 推理preds = model(img)  # 模型推理prediction = ops.non_max_suppression(preds, conf, iou, agnostic=False, max_det=300, classes=None, nc=len(model.names))  # 非最大抑制得到预测结果for i, pred in enumerate(prediction):shape = orig_img.shape  # 图像形状pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()  # 缩放边界框坐标pred_kpts = pred[:, 6:].view(len(pred), *model.kpt_shape) if len(pred) else pred[:, 6:]  # 获取关键点坐标pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape)  # 缩放关键点坐标results.append(Results(orig_img=orig_img,  # 原始图像path=video_path,  # 视频路径names=model.names,  # 类别名称boxes=pred[:, :6],  # 边界框keypoints=pred_kpts))  # 关键点# 获取关键点坐标及其对应的序号for j, kpts in enumerate(pred_kpts):keypoints = kpts.cpu().numpy()  # 将关键点转换为NumPy数组# keypoints 包含了所有关键点的坐标,每一行是一个关键点的坐标# 根据模型的结构,关键点序号可能是从0到N-1,N是关键点的总数# 您可以在这里使用 keypoints 获取关键点的坐标和对应的序号for k, keypoint in enumerate(keypoints):x, y = keypoint[:2]  # 关键点的坐标keypoint_index = k  # 关键点的序号# 这里可以对每个关键点的坐标和序号执行您需要的操作print("关键点序号:", keypoint_index, "关键点坐标:", (x, y))# 显示帧plot_args = {'line_width': None, 'boxes': True, 'conf': True, 'labels': True}  # 绘图参数plot_args['im_gpu'] = img[0]  # 图像张量plotted_img = results[-1].plot(**plot_args)  # 显示处理后的最后一帧结果cv.imshow('plotted_img', plotted_img)  # 显示图像# 按 'q' 键退出if cv.waitKey(1) & 0xFF == ord('q'):break# 释放视频捕获并关闭所有窗口
cap.release()
cv.destroyAllWindows()

效果:

参考:

1.使用PyTorch神经网络和YoloV8识别身体姿势

2.【YOLOV8关键点检测】YOLOv8-pose关键点检测训练自己的数据集

3.yolov8-pose姿势估计,站立识别

4.YOLOv8-Pose推理详解及部署实现

5.YOLOv8人体关键点检测(姿态估计):使用ONNX模型进行推理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/3594.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

同态加密原理解析

目录 1.数学介绍2.使用多项式环进行加密2.1 私钥和公钥的产生2.2 加密2.3 解密 3.同态计算3.1 同态加法3.2 同态乘法 1.数学介绍 同态加密方案基于一个难以计算的问题Ring Learning with Errorsred。这些方案中的数据在加密和未加密时都用多项式表示。 这里举一个简单的多项式…

主打熟人双向社交,UXLINK 如何用群组打造超强社交生态

社交,作为最强 Web3 流量入口 Web2 世界里,社交产品总是最具想象力。全球使用 Facebook 系列产品的日活用户(DAP)均值近 30 亿人,占全球人口的 1/3。然而,加密货币用户仅约有 4.2 亿,占全球人口…

C++ 核心编程(1)

c面向对象编程 1.内存分区模型 程序运行前为代码区和全局区。程序运行后才有栈区和堆区。。 1.1 程序运行前 #include<iostream> #include <bits/stdc.h> using namespace std; /*全局区全局变量、静态变量、常量 */ //全局变量 int g_1 20; int g_2 30; //const…

Reactjs数据篇

参考代码&#xff1a;GitHub - leellun/zhiqu-web-test2 1 通过createAction创建Action做数据传递 在 Redux 中定义动作的常用方法是分别声明一个动作类型常量和一个动作创建器函数来构造该类型的动作。 store/action.ts import { createAction } from "reduxjs/toolk…

力扣刷题学习(跟随视频学着刷)

使用入门 视频链接 【手把手带你刷Leetcode力扣&#xff5c;各个击破数据结构和算法&#xff5c;大厂面试必备技能【已完结】-哔哩哔哩】 https://b23.tv/vIcRT61 时空复杂度 时间&#xff1a; 空间&#xff1a;主要有O(1)和O(n)两种&#xff0c;只用计算开辟的内存&#xff…

三种类的免费SSL证书

目前主流的三种域名证书&#xff1a;单域名证书、多域名证书、通配符泛域名证书。 这三种类型的证书根据用户域名的不同情况&#xff0c;应用场景也大不相同。 单域名证书应用场景&#xff1a; 针对于有且只有一个单独域名的单位&#xff0c;使用单域名证书是刚好能够满足需求…

Linux 高级网络设置

1. rp_filter 逆向路由检查 rp_filter &#xff08;Reverse Path Filtering&#xff09;参数定义了网卡对接收到的数据包进行反向路由验证的规则。他有三个值&#xff0c;0、1、2&#xff0c;具体含意如下&#xff1a; 0&#xff1a;关闭反向路由校验1&#xff1a;开启严格的…

使用脚本定时备份MySql数据库文件

如果mysql不在环境变量中&#xff0c;请先将mysql放入环境变量 #将mysql添加进环境变量中 export PATH$PATH:/usr/local/mysql/bin/#重新加载配置文件 source /etc/profile新建一个脚本 touch backup_all_databases.sh 脚本内容&#xff1a; #!/bin/bash # MySQL登录信息 …

DRF学习之三大认证

一、认证 1、自定义认证 在前面说的 APIView 中封装了三大认证&#xff0c;分别为认证、权限、频率。认证即登录认证&#xff0c;权限表示该用户是否有权限访问接口&#xff0c;频率表示用户指定时间内能访问接口的次数。整个请求最开始的也是认证。 &#xff08;1&#xff…

VUE 打包后 动态修改 后台服务器地址

使用的是第三方 continew-admin 项目 在 continew-admin-ui 项目中 添加 config.json 到public 目录下 {"baseURL": "http://localhost:8000" } 在 request.ts 文件中 async function fetchConfig() {const response await fetch(/config.json);con…

【JavaEE网络】TCP/IP协议:细节与应用

目录 TCP/IP协议协议格式传输层重点协议UDP协议UDP协议端格式 UDP的特点TCP协议TCP协议端格式 TCP的特点 TCP/IP协议 协议格式 应用层&#xff08;后端开发必知必会&#xff09;&#xff1a;这一层也有很多现成的协议&#xff08;后面还会重点介绍HTTP协议&#xff0c;这是做…

SysY 语言

SysY 语言是编译系统设计赛 要实现的编程语言。由 C 语言的一个子集扩展 而成。 每个 SysY 程序的源码存储在一个扩展名为 sy 的文件中。该文件中有且仅 有一个名为 main 的主函数定义&#xff0c;还可以包含若干全局变量声明、常量声明和其 他函数定义。 SysY 语言支持 int/…

jenkins自动化举例

使用 Jenkins 可以显著提高工作效率&#xff1a; 1. **自动化构建**&#xff1a; - 假设您是一个开发人员&#xff0c;需要频繁地编译和测试代码。手动执行这些任务可能会非常耗时。使用 Jenkins&#xff0c;您可以设置自动化构建流程&#xff0c;每当您提交新代码时&#…

RabbitMQ:消息队列的卓越之选

在当今高度互联和数据驱动的世界中&#xff0c;消息队列扮演着至关重要的角色。RabbitMQ&#xff0c;作为其中的佼佼者&#xff0c;以其高效、可靠和灵活的特性&#xff0c;赢得了众多开发者和企业的青睐。本文将深入探讨RabbitMQ的基本概念、核心特性、应用场景以及最佳实践&a…

探秘STM32MDK:编译过程与文件类型解析

探秘STM32MDK&#xff1a;编译过程与文件类型解析 在嵌入式系统开发中&#xff0c;STM32系列微控制器是广泛应用的选择之一&#xff0c;而Keil MDK&#xff08;Microcontroller Development Kit&#xff09;则是一款常用的开发工具套件。了解STM32MDK的编译过程和文件类型对于…

命令执行漏洞【2】vulhub远程命令执行漏洞复现

1.vulhub安装启动靶场环境 &#xff08;1&#xff09;s2-061开启靶场 &#xff08;2&#xff09;s2-059开启靶场 2.漏洞复现 &#xff08;1&#xff09;s2-061漏洞复现 github获取漏洞利用工具 开始利用 &#xff08;2&#xff09;s2-059漏洞复现 在linux特有临时目录/tmp下…

多线程并发和进程通信模拟

一、实验目的&#xff1a; 通过编写多线程并发和进程通信的模拟代码&#xff0c;加深对多线程编程和进程通信的理解。学习如何使用Java中的多线程和管道流来实现并发执行和进程间通信。掌握多线程的基本概念和使用方法&#xff0c;以及进程通信的实现方式。 实验设备与实验环境…

C#实现TFTP客户端

1、文件结构 2、TftpConfig.cs using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace TftpTest {public class TftpConfig{}/// <summary>/// 模式/// </summary>public enum Modes{…

Linux论坛搭建

1.安装httpd服务 1.1安装httpd软件 [rootlocalhost yum.repos.d]# dnf install httpd 1.2.修改httpd的配置 [rootlocalhost yum.repos.d]# vim /etc/httpd/conf/httpd.conf 1.3.启动这个httpd服务,并查看它的状态 [rootlocalhost yum.repos.d]# systemctl start httpd [ro…

NLP(8)--利用RNN实现多分类任务

前言 仅记录学习过程&#xff0c;有问题欢迎讨论 循环神经网络RNN&#xff08;recurrent neural network&#xff09;&#xff1a; 主要思想&#xff1a;将整个序列划分成多个时间步&#xff0c;将每一个时间步的信息依次输入模型&#xff0c;同时将模型输出的结果传给下一个…