TensorFlow开源项目

2a20c54b85e042bfa2440367ae4807e9.gif

欢迎来到 Papicatch的博客

文章目录

🍉TensorFlow介绍

🍉主要特点和功能

🍈多语言支持

🍈灵活的架构

🍈分布式训练

🍈跨平台部署

🍈强大的工具链

🍈丰富的社区和生态系统

🍉核心组件

🍈TensorFlow Core

🍈TensorFlow Extended (TFX)

🍉经典应用场景

🍈计算机视觉

🍈自然语言处理

🍈推荐系统

🍈时间序列分析

🍈强化学习

🍉示例

🍈手写数字识别(MNIST)

🍍代码解析

🍈卷积神经网络(CNN)进行图像分类

🍈文本分类(IMDB影评情感分析)

🍉GitHub 地址


2a20c54b85e042bfa2440367ae4807e9.gif

上两篇文章为TensorFlow的讲解哦,感兴趣的同学可以看一下哦!!!

TensorFlow的安装与使用

TensorFlow高阶API使用与PyTorch的安装

2a20c54b85e042bfa2440367ae4807e9.gif

🍉TensorFlow介绍

        TensorFlow 是由 Google 开发的一个开源机器学习框架,旨在为深度学习研究和实际应用提供强大支持。自发布以来,TensorFlow 已成为深度学习领域的领先框架之一,广泛应用于学术研究、工业界、初创企业和个人项目中。

🍉主要特点和功能

🍈多语言支持

        TensorFlow 提供了 Python、C++、Java、JavaScript、Go 和 Swift 等多种语言的 API,使得开发者可以在不同环境和需求下使用同一个框架。

🍈灵活的架构

        TensorFlow 允许开发者使用高层 API(如 Keras)快速构建和训练模型,同时也支持低层 API 进行更细粒度的控制。这样既能满足新手的入门需求,又能满足专家的复杂应用需求。

🍈分布式训练

        TensorFlow 支持大规模分布式训练,能够在多台机器上并行运行,从而加速训练过程。它提供了多种分布式策略,方便开发者根据自己的需求选择合适的策略。

🍈跨平台部署

        TensorFlow 支持在各种硬件平台上运行,包括 CPU、GPU 和 TPU。同时,它还可以部署在移动设备、Web 浏览器和边缘设备上,适用于多种应用场景。

🍈强大的工具链

        TensorFlow 提供了一系列工具来简化开发过程,如 TensorBoard(用于可视化和调试)、TensorFlow Serving(用于模型部署)、TensorFlow Lite(用于移动和嵌入式设备)、TensorFlow.js(用于在浏览器中运行)等。

🍈丰富的社区和生态系统

        TensorFlow 拥有庞大的用户社区和活跃的开发者生态系统。它不仅有大量的第三方库和扩展,还提供了许多预训练模型和教程,帮助开发者快速上手和应用。

🍉核心组件

🍈TensorFlow Core

  • TensorFlow 的核心库,包含基本的计算图、张量操作和自动求导机制,是其他高层 API 和工具的基础。
  • Keras:TensorFlow 提供的高层 API,简化了深度学习模型的构建、训练和评估过程,支持快速原型开发和实验。

🍈TensorFlow Extended (TFX)

        一个端到端的平台,用于部署生产级机器学习工作流,包括数据验证、特征工程、模型训练和服务等。

🍉经典应用场景

🍈计算机视觉

  • 图像分类:如手写数字识别、猫狗分类。
  • 目标检测:如自动驾驶中的行人检测。
  • 图像生成:如生成对抗网络(GAN)生成逼真图像。

🍈自然语言处理

  • 文本分类:如垃圾邮件检测、情感分析。
  • 机器翻译:如英文到法文的翻译。
  • 语音识别:如语音转文字。

🍈推荐系统

  • 个性化推荐:如电影推荐、音乐推荐。
  • 广告点击率预测:如在线广告系统中的点击率预测。

🍈时间序列分析

  • 金融预测:如股票价格预测。
  • 传感器数据分析:如预测设备故障。

🍈强化学习

  • 游戏 AI:如 AlphaGo。
  • 机器人控制:如机器人手臂的运动控制。

🍉示例

🍈手写数字识别(MNIST)

import tensorflow as tf
from tensorflow.keras import layers, models# 加载数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0# 构建模型
model = models.Sequential([layers.Flatten(input_shape=(28, 28)),layers.Dense(128, activation='relu'),layers.Dropout(0.2),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 评估模型
model.evaluate(x_test, y_test)

🍍代码解析

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

        这段代码加载 MNIST 数据集,其中包含手写数字的灰度图像(28x28 像素)。x_trainx_test 分别是训练集和测试集的图像数据,y_trainy_test 分别是对应的标签。

        数据被归一化到 [0, 1] 范围内,通过除以 255.0(图像像素值的最大值)。

model = models.Sequential([layers.Flatten(input_shape=(28, 28)),layers.Dense(128, activation='relu'),layers.Dropout(0.2),layers.Dense(10, activation='softmax')
])

        这段代码使用 Sequential 模型构建了一个包含以下层的神经网络:

  1. Flatten 层:将输入的 28x28 的二维图像展平为一维向量(长度为 784),以便输入到全连接层。
  2. 第一层 Dense 层:全连接层,包含 128 个神经元,使用 ReLU 激活函数。
  3. Dropout 层:在训练过程中随机断开 20% 的神经元连接,防止过拟合。
  4. 第二层 Dense 层:输出层,包含 10 个神经元,使用 softmax 激活函数,用于多分类问题的概率输出。

🍈卷积神经网络(CNN)进行图像分类

import tensorflow as tf
from tensorflow.keras import datasets, layers, models# 加载CIFAR10数据集
(x_train, y_train), (x_test, y_test) = datasets.cifar10.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0# 构建CNN模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))# 评估模型
model.evaluate(x_test, y_test)

🍈文本分类(IMDB影评情感分析)

import tensorflow as tf
from tensorflow.keras import datasets, layers, models, preprocessing# 加载IMDB数据集
(x_train, y_train), (x_test, y_test) = datasets.imdb.load_data(num_words=10000)
x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=200)
x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=200)# 构建LSTM模型
model = models.Sequential([layers.Embedding(10000, 128),layers.LSTM(128, dropout=0.2, recurrent_dropout=0.2),layers.Dense(1, activation='sigmoid')
])# 编译模型
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5, batch_size=32, validation_data=(x_test, y_test))# 评估模型
model.evaluate(x_test, y_test)

🍉GitHub 地址

  • TensorFlow

         总的来说,TensorFlow 是一个功能强大、灵活性高且社区活跃的开源机器学习框架,适合各种深度学习任务和应用场景。如果你对机器学习和深度学习感兴趣,TensorFlow 是一个非常值得学习和使用的工具。

2a20c54b85e042bfa2440367ae4807e9.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/35180.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3基础使用

目录 一、创建Vue3工程 (一)、cli (二)、vite 二、常用Composition API (一)、setup函数 (二)、ref函数 (三)、reactive函数 (四)、setup注意事项 (五)、计算属性 (六)、watch (七)、watchEffect函数 (八)、生命周期 1、以配置项的形式使用生命周期钩子 2、组合式…

【机器学习-10】 | Scikit-Learn工具包进阶指南:Scikit-Learn工具包之支持向量机模块研究

🎩 欢迎来到技术探索的奇幻世界👨‍💻 📜 个人主页:一伦明悦-CSDN博客 ✍🏻 作者简介: C软件开发、Python机器学习爱好者 🗣️ 互动与支持:💬评论 &…

高考填报志愿攻略,5个步骤选专业和院校

在高考完毕出成绩的时候,很多人会陷入迷茫中,好像努力了这么多年,却不知道怎么规划好未来。怎么填报志愿合适?在填报志愿方面有几个内容需要弄清楚,按部就班就能找到方向,一起来了解一下正确的步骤吧。 第…

入局AI手机 苹果公布Apple Intelligence

日前,苹果WWDC 2024如期召开。在这持续1个小时44分钟的开发者大会上,苹果在前一个小时里更新了iOS、iPadOS、MacOS等操作系统,而且还首次更新了visionOS。余下的时间全部留给了苹果的“AI大礼包”——Apple Intelligence(苹果智能…

mysql是什么

mysql是什么 是DBMS软件系统,并不是一个数据库,管理数据库 DBMS相当于用户和数据库之间的桥梁,有超过300种不同的dbms系统 mysql是关系型数据库,关系型数据库存储模型很想excel,用行和列组织数据 sql是一门编程语言…

关于ip地址的网页无法访问navigator的gpu、媒体、蓝牙等设备的解决方法

在使用threejs的WebGPURenderer渲染器时,发现localhost以及127.0.0.1才能访问到navigator.gpu,直接使用ip会变成undefined,原因是为了用户的隐私安全,只能在安全的上下文中使用,非安全的上下文就会是undefined,安全上下…

谷歌云(GCP)4门1453元最热门证书限时免费考

谷歌云(GCP)最新活动,完成免费官方课程,送4门最热门考试免费考试券1张(每张价值200刀/1453元),这4门也包括最近大热的AI/ML考试,非常值得学习和参加,活动7/17截止 谷歌云是全球最火的三大云计算厂商(前两名AWS, Azure…

MySQL索引优化解决方案--索引失效(3)

索引失效情况 最佳左前缀法则:如果索引了多列,要遵循最左前缀法则,指的是查询从索引的最左前列开始并且不跳过索引中的列。不在索引列上做任何计算、函数操作,会导致索引失效而转向全表扫描存储引擎不能使用索引中范围条件右边的…

【Linux】进程信号_1

文章目录 八、进程信号1.信号 未完待续 八、进程信号 1.信号 信号和信号量之间没有任何关系。信号是Linux系统提供的让用户/进程给其他进程发送异步信息的一种方式。 常见信号: 当信号产生时,可选的处理方式有三种:①忽略此信号。②执行该…

小程序注册

【 一 】小程序注册 微信公众平台 https://mp.weixin.qq.com/ https://mp.weixin.qq.com/注册 邮箱激活 小程序账户注册 微信小程序配置 微信小程序开发流程 添加项目成员 【 二 】云服务 lass 基础设施服务(组装机) 你买了一大堆的电脑配件&#x…

AI早班车2024.6.25

全球AI新闻速递 1.高通:开放 AI 模型,帮助开发者打造骁龙 X Elite 平台智能应用。 2.OpenAI:收购数据库分析公司Rockset。 3.大众海外版车型支持 ChatGPT。 4.乐聚夸父人形机器人,搭载华为云盘古具身智能大模型。 5.微软正努力…

Day45

Day45 jQuery动画 显示和隐藏 <!DOCTYPE html> <html><head><meta charset"UTF-8"><title></title><script src"js/jquery-1.8.2.js" type"text/javascript" charset"utf-8"></script&…

云南省森林管理新篇章:可视化大屏引领绿色智慧革命

在云南省这片绿意盎然的土地上&#xff0c;森林不仅是自然的宝藏&#xff0c;更是生态的守护者。 想象一下&#xff0c;站在巨大的屏幕前&#xff0c;云南省的森林分布、生长状况、病虫害情况等信息一目了然&#xff0c;仿佛拥有了一双能够洞察森林奥秘的“智慧眼”。这正是森林…

输入/输出文字

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 在海龟绘图中&#xff0c;也可以输入或者输出文字&#xff0c;下面分别进行介绍。 1 输出文字 输出文字可以使用write()方法来实现&#xff0c;语…

浊度传感器设备的监测控制和智慧运维

浊度传感器是一种用于测量液体中悬浮颗粒浓度从而反映液体浊度的设备。 其工作原理主要基于以下几种常见方式&#xff1a; 1. 散射光测量原理&#xff1a;当光线穿过含有悬浮颗粒的液体时&#xff0c;颗粒会使光线发生散射。传感器通过测量特定角度的散射光强度来确定浊度。散…

骑马与砍杀战团mod制作-基础-对话制作笔记(四)

骑马与砍杀战团mod制作-基础-对话制作笔记&#xff08;四&#xff09; 资料来源 学习的资料来源&#xff1a; b站【三啸解说】手把手教你做【骑砍】MOD&#xff0c;基础篇&#xff0c;链接为&#xff1a; https://www.bilibili.com/video/BV19x411Q7No?p4&vd_sourcea507…

免费领!系统学习上位机编程的流程与基础教程

上位机电气自动化plc编程全套入门教程工具 华山编程导师根据当前招聘需求的关键点&#xff0c;原创录制了一套系统的学习流程和基础教程&#xff0c;帮助你从快速入门到掌握上位机编程的技能。 二. 学习准备 为了更好地学习并实现80%以上的代码运行&#xff0c;建议准备一个工…

Android音频系统

最近在做UAC的项目&#xff0c;大概就是接收内核UAC的事件&#xff0c;也就是声音相关事件。然后就是pcm_read和AudioTrackr->write之间互传。感觉略微有点奇怪&#xff0c;所以简单总结一下。 1 UAC的简要流程 open_netlink_socket 打开内核窗口&#xff0c;类似于ioctl。…

[leetcode]valid-triangle-number. 有效三角形的个数

. - 力扣&#xff08;LeetCode&#xff09; class Solution { public:int triangleNumber(vector<int>& nums) {int n nums.size();sort(nums.begin(), nums.end());int ans 0;for (int i 0; i < n; i) {for (int j i 1; j < n; j) {int left j 1, righ…