海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow

一、介绍

海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物(‘蛤蜊’, ‘珊瑚’, ‘螃蟹’, ‘海豚’, ‘鳗鱼’, ‘水母’, ‘龙虾’, ‘海蛞蝓’, ‘章鱼’, ‘水獭’, ‘企鹅’, ‘河豚’, ‘魔鬼鱼’, ‘海胆’, ‘海马’, ‘海豹’, ‘鲨鱼’, ‘虾’, ‘鱿鱼’, ‘海星’, ‘海龟’, ‘鲸鱼’)数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。

二、系统效果图片展示

img_06_23_14_45_26

img_06_23_14_45_35

img_06_23_14_45_45

img_06_23_14_45_54

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/mbopflgmz5ck2lyi

四、卷积神经网络算法介绍

卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,因其在处理图像数据方面的卓越性能而广受关注。CNN的主要特点包括:

  1. 局部连接和权值共享:通过卷积层中的滤波器(或称为卷积核),CNN能够捕捉图像中的局部特征。每个滤波器在图像上滑动,通过局部连接和权值共享的机制,显著减少了参数数量,提高了计算效率。
  2. 层次化特征表示:CNN通过多层卷积和池化操作,从低层次到高层次逐步提取图像的特征。低层次特征如边缘和纹理,高层次特征如形状和物体。
  3. 平移不变性:池化层(如最大池化和平均池化)通过对局部区域的下采样,使得模型对图像的平移和局部变形具有一定的鲁棒性。

在图像识别方面,CNN具有广泛的应用,如图像分类、目标检测、语义分割等。以下是一些常见的CNN模型:

  1. LeNet-5:最早的CNN之一,由Yann LeCun等人提出,用于手写数字识别。
  2. AlexNet:2012年ImageNet竞赛冠军,极大推动了深度学习的发展。
  3. VGGNet:通过使用较小的3x3卷积核和更深的网络结构,提高了图像分类精度。
  4. GoogLeNet(Inception):采用Inception模块,减少计算量的同时增加了网络的深度和宽度。
  5. ResNet:引入残差模块,解决了深层网络中的梯度消失问题。

以下是一个简单的示例代码,使用Keras搭建一个CNN模型进行图像分类:


import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10# 加载CIFAR-10数据集
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()# 归一化
train_images, test_images = train_images / 255.0, test_images / 255.0# 搭建CNN模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10, activation='softmax')
])# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 训练模型
model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f'\nTest accuracy: {test_acc}')

这段代码演示了如何使用Keras构建和训练一个简单的CNN模型,对CIFAR-10数据集进行分类。通过多层卷积和池化操作,模型可以逐步提取图像特征,实现高效的图像分类任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/33077.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apple - Media Playback Programming Guide

本文翻译整理自:Media Playback Programming Guide(Updated: 2018-01-16 https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/MediaPlaybackGuide/Contents/Resources/en.lproj/Introduction/Introduction.html#//apple_…

鸿蒙开发系统基础能力:【@ohos.faultLogger (故障日志获取)】

故障日志获取 说明: 本模块首批接口从API version 8开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import faultLogger from ohos.faultLoggerFaultType 故障类型枚举。 系统能力: 以下各项对应的系统能力…

关于文章“python+百度语音识别+星火大模型+讯飞语音合成的语音助手”报错的修改

前言 关于我的文章:python百度语音识别星火大模型讯飞语音合成的语音助手,运行不起来的问题 文章地址: https://blog.csdn.net/Phillip_xian/article/details/138195725?spm1001.2014.3001.5501 1.报错问题 如果运行中报错,且…

深入分析 Android BroadcastReceiver (六)

文章目录 深入分析 Android BroadcastReceiver (六)1. 广播机制的高级优化策略1.1 使用 Sticky Broadcast(粘性广播)示例:粘性广播(过时,不推荐) 1.2 使用 LiveData 和 ViewModel 进行组件通信示例&#xf…

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑需求响应与储能寿命模型的火储协调优化运行策略》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

云原生容器技术入门:Docker、K8s技术的基本原理和用途

🐇明明跟你说过:个人主页 🏅个人专栏:《未来已来:云原生之旅》🏅 🔖行路有良友,便是天堂🔖 目录 一、容器技术概述 1、什么是容器技术 2、容器技术的历史与发展 3…

五十八周:文献阅读

目录 摘要 Abstract 文献阅读:使用 Transformer 进行长期预测-PatchTST 一、现有问题 二、提出方法 三、相关知识 1、Patch 2、Vanilla Transformer 四、提出的方法 1、模型结构 2、表征学习 3、模型优点 五、研究实验 1、数据集 2、评估指标 3、基…

Spring+SpringMVC介绍+bean实例化+依赖注入实战

Spring介绍 Spring是一个轻量级的Java 开发框架,核心是IOC(控制反转)和AOP(面向切面编程) Spring解决了业务层(Service包)与其他各层(表现层,包括Model,Vie…

车辆数据的提取、定位和融合(其二.一 共十二篇)

第一篇: System Introduction 第二篇:State of the Art 第三篇:localization 第四篇:Submapping and temporal weighting 第五篇:Mapping of Point-shaped landmark data 第六篇:Clustering of landma…

【Spring】Spring Boot 快速入门

📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 |《MySQL探索之旅》 |《Web世界探险家》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更…

计算机网络期末

1、IP 地址为:192.168.0.254,它的子网掩码应该为( ) A.255.255.255.0 B.255.255.254.0 C.255.255.252.0 D.255.255.0.0 2、最容易产生网络可靠性瓶颈问题的拓扑构型是( )。 A 总线型 B 星型 C 环型 D 网状型 3、HTTP 就是电子邮件阅读协议&#xff0…

UE5 中的碰撞问题

文章目录 一、初始准备二、重叠和碰撞三、自定义碰撞 一、初始准备 首先我们创建一个 BP_ThirdPerson 项目,然后在项目中创建两个 Actor 的蓝图 Blueprint 首先是一个移动的 BP_Push,这里使用 time line 循环旋转 cube 的相对位置 得到效果如下 然后是…

计算机网络 —— 应用层(FTP)

计算机网络 —— 应用层(FTP) FTP核心特性:运作流程: FTP工作原理主动模式被动模式 我门今天来看应用层的FTP(文件传输协议) FTP FTP(File Transfer Protocol,文件传输协议&#x…

qt基本窗口类(QWidget,QDialog,QMainWindow)

1.三个基本窗口类 1.1QWidget 所有窗口的基类 可以内嵌到其他窗口的内部,无边框 也可以作为独立窗口显示,有边框 1.2QDialog 继承于QWidget 对话框窗口类 不可以内嵌到其他窗口 有模态和非模态两种显示方式 1.3QMainWind 继承于QWidget 主窗口类 不可以…

【服务器07】之【GitHub项目管理】及【Unity异步加载场景】

登录GitHub官网 GitHub: Let’s build from here GitHub 注册账号 登录账号 输入一个自定义名字,点击创建存储库就可以了 现在我们下载Fork Fork - a fast and friendly git client for Mac and Windows (git-fork.com) 免费的 下载完成之后点击File下的Clone …

TLS握手中的RTT

文章目录 TLS 1.2 握手过程中的 RTT 次数TLS 1.3 1-RTT 初次TLS1.3 0-RTT 握手过程总结 TLS 1.2 握手过程中的 RTT 次数 TLS 1.2 握手通常需要2 RTT 才能完成。具体步骤如下: 第一次 RTT: 客户端发送 ClientHello:客户端生成一个随机数&…

Pytest和Unitest框架对比

在学到自动化的时候,很多同学都遇到了Pytest和Unitest框架,有的人是两个都学,但是学的不精只是知道分别怎么用.不了解两个区别是什么.有的是犹豫到底要学习那个框架.其实要做好自动化测试,是有必要了解不同框架之间的差异化的. Pytest 特点: Pytest采用了更简洁、更灵活的语法…

Linux - 探秘 Linux 的 /proc/sys/vm 常见核心配置

文章目录 PreLinux 的 /proc/sys/vm 简述什么是 /proc/sys/vm?主要的配置文件及其用途参数调整对系统的影响dirty_background_ratio 和 dirty_ratioswappinessovercommit_memory 和 overcommit_ratiomin_free_kbytes 实例与使用建议调整 swappiness设置 min_free_kb…

移动展厅:便捷高效的展示新模式—轻空间

在现代社会,移动展厅作为一种创新的展示模式,逐渐成为各行业的重要工具。凭借其便捷高效的特点,移动展厅为企业和组织提供了全新的展示解决方案。 快速部署与灵活性 移动展厅采用气膜结构,能够在短时间内快速部署。这种高效的搭建…

【非常实验】如何在移动设备上运行 Docker?

本章就从在 DevOps 中最基本但也是最强大的工具 Docker 开始。最近,我在尝试更多Termux的可能性,于是就想着试试Docker适不适合arm架构。 我用的是天玑9000芯片,而不是高通,所以显示不出来 Qualcomm。所以我决定从在手机上运行 docker 开始,但这可能吗?让我们一起来看看吧…