Applied Spatial Statistics(七):Python 中的空间回归

Applied Spatial Statistics(七):Python 中的空间回归

本笔记本演示了如何使用 pysal 的 spreg 库拟合空间滞后模型和空间误差模型。

  • OLS
  • 空间误差模型
  • 空间滞后模型
  • 三种模型的比较
  • 探索滞后模型中的直接和间接影响
import numpy as np
import pandas as pdimport geopandas as gpd
import seaborn as sns
import matplotlib.pyplot as plt
from libpysal.weights import Queen
from splot.esda import plot_moran
from esda.moran import Moran
import spreg

1.数据

在此笔记本中,我将使用 2020 年美国总统选举数据集进行演示。
voting 数据框包含县级投票给民主党的人数百分比(编码为 new_pct_dem)以及该县的一些社会经济变量。该数据集仅包含美国本土 48 个州的统计数据。

voting = pd.read_csv('https://raw.github.com/Ziqi-Li/gis5122/master/data/voting_2020.csv')voting[['median_income']] = voting[['median_income']]/10000
voting.head()
county_idstatecountyNAMEproj_Xproj_Ytotal_popnew_pct_demsex_ratiopct_black...median_incomepct_65_overpct_age_18_29ginipct_manufln_pop_denpct_3rd_partyturn_outpct_fbpct_uninsured
0170511751Fayette County, Illinois597979.55311796861.9932156518.445122113.64.7...4.665018.814.8991420.437314.93.3927151.92365258.9309841.38.2
11710717107Logan County, Illinois559814.67661920479.9752900329.42003097.26.9...5.730818.017.2568360.420112.43.8472242.33285056.6315521.64.5
21716517165Saline County, Illinois650278.35791660709.8082399425.60191196.92.6...4.409019.913.5867300.46928.74.1286541.77813959.1479371.04.2
3170971797Lake County, Illinois654010.92622174576.60570147362.27588899.86.8...8.942713.715.8231320.484716.37.3082011.95417771.15197518.76.8
41712717127Massac County, Illinois640398.98631599902.4911421925.62611889.55.8...4.748120.812.3707720.40977.44.0677881.39644362.2814251.05.4

5 rows × 22 columns

然后我们阅读了美国的县边界文件。

shp = gpd.read_file("https://raw.github.com/Ziqi-Li/gis5122/master/data/us_counties.geojson")
#Merge the shapefile with the voting data by the common county_id
shp_voting = shp.merge(voting, on ="county_id")#Dissolve the counties to obtain boundary of states, used for mapping
state = shp_voting.dissolve(by='STATEFP').geometry.boundary

选择本练习中要使用的变量,我从列表中选择了 6 个预测因子。

variable_names = ['sex_ratio', 'pct_black', 'pct_hisp','pct_bach', 'median_income','ln_pop_den']y = shp_voting[['new_pct_dem']].valuesX = shp_voting[variable_names].values

2.OLS model (baseline)

这里我演示如何使用 spring 来拟合 OLS 模型。当然你也可以使用 statsmodels

#In the spreg.OLS() you need to specify the y and X, also variable names (optional)ols = spreg.OLS(y, X, name_y='new_pct_dem', name_x=variable_names)
print(ols.summary)
REGRESSION RESULTS
------------------SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
-----------------------------------------
Data set            :     unknown
Weights matrix      :        None
Dependent Variable  : new_pct_dem                Number of Observations:        3103
Mean dependent var  :     33.7616                Number of Variables   :           7
S.D. dependent var  :     16.2257                Degrees of Freedom    :        3096
R-squared           :      0.6091
Adjusted R-squared  :      0.6083
Sum squared residual:      319249                F-statistic           :    803.9833
Sigma-square        :     103.117                Prob(F-statistic)     :           0
S.E. of regression  :      10.155                Log likelihood        :  -11592.001
Sigma-square ML     :     102.884                Akaike info criterion :   23198.003
S.E of regression ML:     10.1432                Schwarz criterion     :   23240.284------------------------------------------------------------------------------------Variable     Coefficient       Std.Error     t-Statistic     Probability
------------------------------------------------------------------------------------CONSTANT         5.83676         1.96534         2.96984         0.00300sex_ratio         0.00613         0.01754         0.34970         0.72659pct_black         0.48310         0.01401        34.47681         0.00000pct_hisp         0.23952         0.01329        18.02612         0.00000pct_bach         0.97537         0.02854        34.17057         0.00000median_income        -1.66008         0.19755        -8.40329         0.00000ln_pop_den         2.13283         0.12925        16.50160         0.00000
------------------------------------------------------------------------------------REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER           33.073TEST ON NORMALITY OF ERRORS
TEST                             DF        VALUE           PROB
Jarque-Bera                       2        1166.636           0.0000DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST                             DF        VALUE           PROB
Breusch-Pagan test                6         268.617           0.0000
Koenker-Bassett test              6         118.745           0.0000
================================ END OF REPORT =====================================

我们可以与 statsmodels 进行比较,结果相同

查看 OLS 残差图

ols.u
array([[ 0.98102642],[-7.61122909],[ 3.44911401],...,[-3.82424613],[-0.7422498 ],[-1.11507546]])
from matplotlib import colors#For creating a discrete color classification
norm = colors.BoundaryNorm([-20, -10, -5, 0, 5, 10, 20],ncolors=256)ax = shp_voting.plot(column=ols.u.reshape(-1),legend=True,figsize=(15,8), norm=norm, linewidth=0.0)state.plot(ax=ax,linewidth=0.3,edgecolor="black")plt.title("Map of residuals of the OLS model",fontsize=15)
Text(0.5, 1.0, 'Map of residuals of the OLS model')

在这里插入图片描述

从 OLS 残差图中,我们可以看到空间自相关性很强,高/低残差聚集在一起。这强烈表明我们的模型缺少空间结构,并且违反了 OLS 的独立性假设。

然后让我们通过计算残差的 Moran’s I 来更定量地评估空间自相关性。

#Here we use the Queen contiguity
w = Queen.from_dataframe(shp_voting)#row standardization
w.transform = 'R'#The warning is saying there are two counties without neighbors, lets don't worry about this for now.
<ipython-input-14-9c7ca81e50b6>:2: FutureWarning: `use_index` defaults to False but will default to True in future. Set True/False directly to control this behavior and silence this warningw = Queen.from_dataframe(shp_voting)('WARNING: ', 2441, ' is an island (no neighbors)')
('WARNING: ', 2701, ' is an island (no neighbors)')/usr/local/lib/python3.10/dist-packages/libpysal/weights/weights.py:224: UserWarning: The weights matrix is not fully connected: There are 3 disconnected components.There are 2 islands with ids: 2441, 2701.warnings.warn(message)

#Here, lets calculate the Moran's I value, and plot it.
#ols.u is the residuals from the OLS modelols_moran = Moran(ols.u, w, permutations = 199) #199 permutationsplot_moran(ols_moran, figsize=(10,4))

在这里插入图片描述

我们发现 Moran’s I 值等于 0.6,这让我们确信 OLS 残差图上确实存在很强的空间模式。

现在有两个选择:我们可以使用 滞后模型,或者我们可以使用 误差模型

一个便利之处在于,如果您将权重矩阵传递给 OLS 函数,同时指定 spat_diag=True,那么您将获得一些额外的空间诊断,可以帮助您做出决定。如果您指定 moran=True,这还包括残差的 Moran’s I。

ols = spreg.OLS(y, X, w=w, spat_diag=True, moran=True,name_y='pct_dem', name_x=variable_names)print(ols.summary)
REGRESSION RESULTS
------------------SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES
-----------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  :     pct_dem                Number of Observations:        3103
Mean dependent var  :     33.7616                Number of Variables   :           7
S.D. dependent var  :     16.2257                Degrees of Freedom    :        3096
R-squared           :      0.6091
Adjusted R-squared  :      0.6083
Sum squared residual:      319249                F-statistic           :    803.9833
Sigma-square        :     103.117                Prob(F-statistic)     :           0
S.E. of regression  :      10.155                Log likelihood        :  -11592.001
Sigma-square ML     :     102.884                Akaike info criterion :   23198.003
S.E of regression ML:     10.1432                Schwarz criterion     :   23240.284------------------------------------------------------------------------------------Variable     Coefficient       Std.Error     t-Statistic     Probability
------------------------------------------------------------------------------------CONSTANT         5.83676         1.96534         2.96984         0.00300sex_ratio         0.00613         0.01754         0.34970         0.72659pct_black         0.48310         0.01401        34.47681         0.00000pct_hisp         0.23952         0.01329        18.02612         0.00000pct_bach         0.97537         0.02854        34.17057         0.00000median_income        -1.66008         0.19755        -8.40329         0.00000ln_pop_den         2.13283         0.12925        16.50160         0.00000
------------------------------------------------------------------------------------REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER           33.073TEST ON NORMALITY OF ERRORS
TEST                             DF        VALUE           PROB
Jarque-Bera                       2        1166.636           0.0000DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST                             DF        VALUE           PROB
Breusch-Pagan test                6         268.617           0.0000
Koenker-Bassett test              6         118.745           0.0000DIAGNOSTICS FOR SPATIAL DEPENDENCE
TEST                           MI/DF       VALUE           PROB
Moran's I (error)              0.6000        56.164           0.0000
Lagrange Multiplier (lag)         1        1952.063           0.0000
Robust LM (lag)                   1          18.792           0.0000
Lagrange Multiplier (error)       1        3119.345           0.0000
Robust LM (error)                 1        1186.074           0.0000
Lagrange Multiplier (SARMA)       2        3138.137           0.0000================================ END OF REPORT =====================================

从 L-M 检验中,我们可以预期误差模型比滞后模型更为合适(比较稳健得分:1186 比 18)。



3.Spatial Error Model (SEM)

现在让我们使用“spreg.ML_Error()”拟合空间错误模型,其中您需要指定 y、X 和权重矩阵 w。

sem = spreg.ML_Error(y, X, w=w, name_x=variable_names, name_y='new_pct_dem')print(sem.summary)
/usr/local/lib/python3.10/dist-packages/scipy/optimize/_minimize.py:913: RuntimeWarning: Method 'bounded' does not support relative tolerance in x; defaulting to absolute tolerance.warn("Method 'bounded' does not support relative tolerance in x; "REGRESSION RESULTS
------------------SUMMARY OF OUTPUT: ML SPATIAL ERROR (METHOD = full)
---------------------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  : new_pct_dem                Number of Observations:        3103
Mean dependent var  :     33.7616                Number of Variables   :           7
S.D. dependent var  :     16.2257                Degrees of Freedom    :        3096
Pseudo R-squared    :      0.5167
Log likelihood      : -10170.5905
Sigma-square ML     :     33.4938                Akaike info criterion :   20355.181
S.E of regression   :      5.7874                Schwarz criterion     :   20397.462------------------------------------------------------------------------------------Variable     Coefficient       Std.Error     z-Statistic     Probability
------------------------------------------------------------------------------------CONSTANT        19.00473         1.49728        12.69280         0.00000sex_ratio        -0.04056         0.00988        -4.10353         0.00004pct_black         0.74856         0.01685        44.43261         0.00000pct_hisp         0.31866         0.01734        18.37383         0.00000pct_bach         0.72854         0.02000        36.42952         0.00000median_income        -2.42279         0.15714       -15.41832         0.00000ln_pop_den         1.83430         0.13375        13.71399         0.00000lambda         0.86984         0.00994        87.51130         0.00000
------------------------------------------------------------------------------------
================================ END OF REPORT =====================================

空间滞后误差项的 lambda(或其他使用 rho 的软件或符号)系数非常显著,并且其幅度相当大,这表明残差中存在很强的空间自相关性,这被滞后误差项捕获。

请注意,sem 的 sem.e_filtered 属性应该是 iid 误差。而 sem.u 是自回归误差 + iid 误差。现在让我们再次查看残差的 Moran’s I。

sem.e_filtered
array([[-2.82249844],[-2.93425648],[ 1.76293602],...,[ 0.58894001],[ 4.25853052],[-4.82251595]])
sem_moran = Moran(sem.e_filtered, w, permutations = 199) #199 permutations
plot_moran(sem_moran, zstandard=True, figsize=(10,4))

在这里插入图片描述

非常低的 Moran’s I -> 随机

ax = shp_voting.plot(column=sem.e_filtered.reshape(-1),legend=True,figsize=(15,8), norm=norm, linewidth=0.0)
state.plot(ax=ax,linewidth=0.3,edgecolor="black")
plt.title("Map of filtered residuals of the SEM model",fontsize=15)
Text(0.5, 1.0, 'Map of filtered residuals of the SEM model')

在这里插入图片描述

随机模式!太棒了!


4.Spatial Lag Model

类似地,让我们将此重复到空间滞后模型

slm = spreg.ML_Lag(y, X, w=w, name_y='new_pct_dem', name_x=variable_names)print(slm.summary)
REGRESSION RESULTS
------------------SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL LAG (METHOD = FULL)
-----------------------------------------------------------------
Data set            :     unknown
Weights matrix      :     unknown
Dependent Variable  : new_pct_dem                Number of Observations:        3103
Mean dependent var  :     33.7616                Number of Variables   :           8
S.D. dependent var  :     16.2257                Degrees of Freedom    :        3095
Pseudo R-squared    :      0.7744
Spatial Pseudo R-squared:  0.5591
Log likelihood      : -10853.5647
Sigma-square ML     :     59.4991                Akaike info criterion :   21723.129
S.E of regression   :      7.7136                Schwarz criterion     :   21771.450------------------------------------------------------------------------------------Variable     Coefficient       Std.Error     z-Statistic     Probability
------------------------------------------------------------------------------------CONSTANT         1.07097         1.50321         0.71245         0.47618sex_ratio         0.01044         0.01333         0.78274         0.43378pct_black         0.27765         0.01295        21.43381         0.00000pct_hisp         0.16619         0.01060        15.68552         0.00000pct_bach         0.83467         0.02200        37.93947         0.00000median_income        -2.99112         0.15043       -19.88429         0.00000ln_pop_den         1.47061         0.10082        14.58655         0.00000W_new_pct_dem         0.58112         0.01342        43.31362         0.00000
------------------------------------------------------------------------------------
================================ END OF REPORT =====================================

空间滞后项“W_new_pct_dem”的 rho 系数显著,且幅度很大,这表明因变量具有很强的空间溢出效应。

slm_moran = Moran(slm.u, w, permutations = 199) #199 permutations
plot_moran(slm_moran, zstandard=True, figsize=(10,4))

在这里插入图片描述

ax = shp_voting.plot(column=slm.u.reshape(-1),legend=True,figsize=(15,8), norm=norm, linewidth=0.0)state.plot(ax=ax,linewidth=0.3,edgecolor="black")
plt.title("Map of residuals of the spatial lag model",fontsize=15)
Text(0.5, 1.0, 'Map of residuals of the spatial lag model')

在这里插入图片描述


5.滞后、误差和 OLS 模型的交叉比较。

总体而言,我们看到尽管有一些变化(例如,在 SEM 模型中,%black 的影响更大),但估计值是一致的。OLS 模型不可靠,因为我们知道假设被违反了。在滞后模型中,即使我们考虑了邻近投票偏好,残差仍然显示出一些弱自相关性。而在误差模型中,我们确实观察到了随机残差。

所以如果我需要做出决定,我会使用误差模型。这也得到了 LM 测试的证据以及误差模型具有最低 AIC 值的支持。

PredictorOLS EstimatesSLM EstimatesSEM Estimates
CONSTANT5.83*1.0719.00*
sex_ratio0.000.01-0.04*
pct_black0.48*0.27*0.74*
pct_hisp0.23*0.16*0.31*
pct_bach0.97*0.83*0.72*
median_income-1.66*-2.99*-2.42*
ln_pop_den2.13*1.47*1.83*
lambdaNA0.58*0.86*
AIC23198.0021723.1220355.18
Moran’s I of residuals0.600.15-0.08

6.更多关于 SLM 模型的内容:间接影响的检查。

场景:如果莱昂的 bach 百分比增加 1%,会怎样?附近县的 dem 百分比会发生什么变化?

步骤:

  1. 使用 w.full() 获取完整的 n x n 矩阵
  2. 计算 (I-pW)^-1*beta(此处的估计值是 SLM 模型中的 bach 百分比,因此为 0.83),现在您获得了完整的 n x n 变化交互。
  3. 找到任何感兴趣的县的行索引。
  4. 现在您可以选择该县的列并检查这将如何影响其他县。
#1.
w.full()[0]
array([[0., 0., 0., ..., 0., 0., 0.],[0., 0., 0., ..., 0., 0., 0.],[0., 0., 0., ..., 0., 0., 0.],...,[0., 0., 0., ..., 0., 0., 0.],[0., 0., 0., ..., 0., 0., 0.],[0., 0., 0., ..., 0., 0., 0.]])
np.identity(3103)
array([[1., 0., 0., ..., 0., 0., 0.],[0., 1., 0., ..., 0., 0., 0.],[0., 0., 1., ..., 0., 0., 0.],...,[0., 0., 0., ..., 1., 0., 0.],[0., 0., 0., ..., 0., 1., 0.],[0., 0., 0., ..., 0., 0., 1.]])
#2.
effects = np.linalg.inv(np.identity(3103) - 0.58*w.full()[0])*0.83 #n=3103, rho=0.58, est_pct_bach = 0.83effects
array([[8.92141250e-01, 1.32877317e-03, 1.52996497e-14, ...,3.14050249e-31, 5.12287114e-06, 1.79564935e-10],[9.49123691e-04, 8.98379566e-01, 1.43986921e-13, ...,4.16193409e-29, 1.14493906e-03, 1.32924287e-10],[1.27497081e-14, 1.67984741e-13, 9.03375896e-01, ...,8.63302503e-23, 5.33348558e-13, 2.63149009e-21],...,[2.61708541e-31, 4.85558978e-29, 8.63302503e-23, ...,8.88070682e-01, 8.55288372e-27, 1.32652812e-25],[3.65919367e-06, 1.14493906e-03, 4.57155907e-13, ...,7.33104319e-27, 8.95542764e-01, 4.10759600e-10],[1.12228084e-10, 1.16308751e-10, 1.97361756e-21, ...,9.94896087e-26, 3.59414650e-10, 9.05420698e-01]])
#3. find the row index for Leon, which is 67.
shp_voting[shp_voting['NAME_x'] == "Leon"]
GEOIDSTATEFPNAME_xcounty_idgeometrystatecountyNAME_yproj_Xproj_Y...median_incomepct_65_overpct_age_18_29ginipct_manufln_pop_denpct_3rd_partyturn_outpct_fbpct_uninsured
671207312Leon12073POLYGON ((1080730.82089 870592.41110, 1086551....1273Leon County, Florida1.120705e+06889449.6751...5.310612.930.0407220.48962.06.0235681.20236471.9104746.88.1
10504828948Leon48289POLYGON ((-30255.42040 920246.79226, -30598.62...48289Leon County, Texas3.831304e+02913423.2253...4.304524.212.3425250.52715.72.7675770.89944668.0744175.217.0

2 rows × 26 columns

#Total effects for Leon can be obtained in the diagnoal of the full effects matrix.effects[67,67]
0.903899945968712

这表明,大学毕业生人数每增加 1%,民主党的投票份额将增加约 0.90%(直接 + 间接)。请注意,这大于滞后模型的系数(即 0.83),该系数仅捕捉直接影响。
间接影响是其自身与邻居之间的空间相互作用的结果,约为 0.07%(0.90 - 0.83)

现在让我们来看看莱昂的变化如何影响周边县市。

#get the effects for leon and plot it
shp_voting['d_pct_bach_leon'] = effects[:,67]ax = shp_voting[shp_voting['state'] == 12].plot(column='d_pct_bach_leon',legend=True,figsize=(15,8), linewidth=0.0,aspect=1)plt.title("% increase in Dem share if Leon has \n1% more college graduates",fontsize=15,y=1.08)
Text(0.5, 1.08, '% increase in Dem share if Leon has \n1% more college graduates')

在这里插入图片描述


shp_voting[(shp_voting['state'] == 12) & (shp_voting['NAME_x'] == "Jefferson")].d_pct_bach_leon
2808    0.121902
Name: d_pct_bach_leon, dtype: float64

因此,我们基本上可以看出,如果莱昂的大学毕业生人数增加 1%,预计附近县的 %dem 份额将增加约 0.12%。例如,受莱昂变化的影响,杰斐逊县的 dem 份额可能会增加 0.12%。

shp_voting[(shp_voting['state'] == 12) & (shp_voting['NAME_x'] == "Miami-Dade")].d_pct_bach_leon
2607    1.163942e-08
Name: d_pct_bach_leon, dtype: float64

然而,我们可以看到,对于迈阿密戴德等较远的县,间接溢出效应基本为零。这是因为效应的幅度 (rho) 以及指定的 W 矩阵非常局部。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/33019.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【html】用html写一个博物馆首页

效果图&#xff1a; 二级导航&#xff1a; 源码&#xff1a; <!DOCTYPE html> <html lang"zh"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><l…

江协科技51单片机学习- p14 调试LCD1602显示屏

前言&#xff1a; 本文是根据哔哩哔哩网站上“江协科技51单片机”视频的学习笔记&#xff0c;在这里会记录下江协科技51单片机开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了江协科技51单片机教学视频和链接中的内容。 引用&#xff1a; 51单片机入门教程-2…

RabbitMQ消息队列 安装及基本介绍

一.MQ介绍 Message Queue &#xff08;MQ&#xff09;是一种跨进程的通信机制&#xff0c;用于在系统之间进行传递消息。MQ作为消息中间件&#xff0c;可以进行异步处理请求&#xff0c;从而减少请求响应时间和解耦 1.1 应用场景 1.1.1 系统之间通过MQ进行消息通信&#xff0…

leetcode 二分查找·系统掌握 x的平方根

题目&#xff1a; 题解 这题可以使用~01~泛型查找在0~x/2的范围内查找答案。 int mySqrt(int x) {long l0,rx,mid;while(l<r){mid(lr1)>>1;if(mid*mid>x)rmid-1;else lmid;}//因为一定有答案所以不用判定是否查找失败return l;}

Docker构建多平台镜像

docker的多架构镜像构建 目前很多服务器都是基于arm架构的&#xff0c;而现在大多数的docker镜像都是基于x86架构的。一种情况就是同样的代码编译成业务包做成镜像需要部署在不同架构的服务器上&#xff0c;这个时候我们就可以使用docker的多平台构建了。 以下操作是在centos7.…

深入探索 Nuxt3 Composables:掌握目录架构与内置API的高效应用

title: 深入探索 Nuxt3 Composables&#xff1a;掌握目录架构与内置API的高效应用 date: 2024/6/23 updated: 2024/6/23 author: cmdragon excerpt: 摘要&#xff1a;“本文深入探讨了Nuxt3 Composables&#xff0c;重点介绍了其目录架构和内置API的高效应用。通过学习本文&…

pcl::PointXYZRGBA造成点云无法显示

如果pcd文件没有rgba信息&#xff0c;使用pcl::PointXYZRGBA类型打开会提示以下信息&#xff1a; Failed to find match for field rgba另外&#xff0c;显示出来的点云是黑色&#xff0c;如果使用默认背景色为黑色&#xff0c;就无法显示点云了。 如果设置其它背景色&#xf…

视频监控平台:支持交通部行业标准JT/T905协议(即:出租汽车服务管理信息系统)的源代码的函数和功能介绍及分享

目录 一、视频监控平台介绍 &#xff08;一&#xff09;概述 &#xff08;二&#xff09;视频接入能力介绍 &#xff08;三&#xff09;功能介绍 二、JT/T905协议介绍 &#xff08;一&#xff09;概述 &#xff08;二&#xff09;主要内容 1、设备要求 2、业务功能要求…

[最全]设计模式实战(一)UML六大原则

UML类图 UML类图是学习设计模式的基础,学习设计模式,主要关注六种关系。即:继承、实现、组合、聚合、依赖和关联。 UML类图基本用法 继承关系用空心三角形+实线来表示。实现接口用空心三角形+虚线来表示。eg:大雁是最能飞的,它实现了飞翔接口。 关联关系用实线箭头来表示…

OOM日志分析

目录 1. 日志分析2. MAT 工具2.1 日志打印方式2.1.1 HeapDumpOnOutOfMemoryError&#xff08;推荐&#xff09;2.1.2 jmp 命令 2.2 MAT分析方式2.2.1 饼图分析2.2.2 树形图分析2.2.2 泄漏疑点 3. 优化 首先说一下结论&#xff1a;通过MAT工具分析才是最精准的&#xff0c;直接通…

2025秋招NLP算法面试真题(二)-史上最全Transformer面试题:灵魂20问帮你彻底搞定Transformer

简单介绍 之前的20个问题的文章在这里&#xff1a; https://zhuanlan.zhihu.com/p/148656446 其实这20个问题不是让大家背答案&#xff0c;而是为了帮助大家梳理 transformer的相关知识点&#xff0c;所以你注意看会发现我的问题也是有某种顺序的。 本文涉及到的代码可以在…

C语言中的字符输入/输出和验证输入

在C语言中&#xff0c;字符输入/输出功能允许程序与用户进行交互&#xff0c;读取用户的输入信息并展示输出结果。同时&#xff0c;验证输入的作用在于确保用户输入的数据符合预期&#xff0c;以提高程序的稳定性和可靠性&#xff0c;防止无效输入引发的错误或异常行为&#xf…

JavaWeb——MySQL:DDL操作库

目录 1.DDL&#xff1a;查询数据库&#xff1b; 1.1 查询数据库 1.2 创建数据库 1.DDL&#xff1a;查询数据库&#xff1b; 具体操作&#xff1a;增 删 查 用 &#xff1b; 1.1 查询数据库 SQL语句&#xff1a;show databases; 由于我创建过一些数据库&#xff0c;我查询的…

[Spring Boot]Netty-UDP客户端

文章目录 简述Netty-UDP集成pom引入ClientHandler调用 消息发送与接收在线UDP服务系统调用 简述 最近在一些场景中需要使用UDP客户端进行&#xff0c;所以开始集成新的东西。本文集成了一个基于netty的SpringBoot的简单的应用场景。 Netty-UDP集成 pom引入 <!-- netty --…

计算机专业:昔日万金油,明日科技潮头的弄潮儿

高考后的十字路口&#xff1a;计算机专业&#xff0c;依旧闪耀吗&#xff1f; 随着2024年高考的尘埃落定&#xff0c;数百万青春洋溢的脸庞再次凝视着未来的迷雾&#xff0c;试图在繁星点点的专业宇宙中找到那颗最亮的星——计算机科学与技术。长久以来&#xff0c;计算机专业…

【目标检测】DAB-DETR

一、引言 论文&#xff1a; DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR 作者&#xff1a; IDEA 代码&#xff1a; DAB-DETR 注意&#xff1a; 该算法是对DETR的改进&#xff0c;在学习该算法前&#xff0c;建议掌握多头注意力、Sinusoidal位置编码、DETR等相…

Android jetpack Room的简单使用

文章目录 项目添加ksp插件添加 room 引用开始使用room1. 创建bean2. 创建 dao类3. 创建database类 数据库升级复制数据库到指定路径参考文献 项目添加ksp插件 注意&#xff0c;因为ksp插件 是跟项目中使用的kotlin的版本要保持一致的&#xff0c;否则会报错的 首先我们去 https…

Python18 数据结构与数据类型转换

1.python中的数据结构 在Python中&#xff0c;数据结构是用来存储、组织和管理数据的方式&#xff0c;以便有效地执行各种数据操作。Python提供了几种内置的数据结构&#xff0c;每种都有其特定的用途和操作方法。以下是Python中一些主要的数据结构&#xff1a; 1.列表&#…

攻防世界-2-1

下载附件&#xff0c;发现是一张损坏的png文件&#xff0c;扔winhex里面修改文件头 修改之后发现还是打不开&#xff0c;提示CRC错误&#xff0c;脚本跑一下 循环冗余校验CRC&#xff08;Cyclic Redundancy Check&#xff09;是数据通信领域常用的一种数据传输检错技术。通过在…

记录Nuxt3部署线上pm2启动项目修改端口

看官方文档&#xff1a; TNND&#xff0c;修改这个端口号顶个P用&#xff0c;毛用也没有 实际上应该是这样&#xff1a; 好了&#xff0c;误人子弟&#xff5e;