吴恩达机器学习 第二课 week4 决策树

目录

01 学习目标

02 实现工具

03 问题描述

04 构建决策树

05 总结


01 学习目标

     (1)理解“熵”、“交叉熵(信息增益)”的概念

     (2)掌握决策树的构建步骤与要点

02 实现工具

    (1)代码运行环境

              Python语言,Jupyter notebook平台

    (2)所需模块

              numpy,matplotlib,public_tests

03 问题描述

       假设你是犇犇蘑菇集团的总裁,你现在要亲自抽检10只蘑菇,看下里面有几只是毒蘑菇,程序猿出身的你打算采用决策树进行检测,Let's begin!

04 构建决策树

     (1)导入所需模块

import numpy as np
import matplotlib.pyplot as plt
from public_tests import *%matplotlib inline

      (public_tests是自定义模块,内部包括compute_entropy_test、split_dataset_test、compute_information_gain_test、get_best_split_test共4个函数,是一个 Jupyter Notebook 的魔法命令(Magic Command),用于在 Notebook 单元格中直接显示 Matplotlib 生成的图形) 

     (2)数据集

       抽检的蘑菇采用3个特征,分别是Brown Cap、Tapering Stalk Shape和Solitary,检测结果为是/否有毒。特征及结果采用独热编码(one-hot),如下表:

        其中,Brown Cap列的1表示“棕色帽”、0表示“红色帽”;Tapering Stalk Shape列的1表示“锥形茎”、0表示“扩口茎”;Solitary列的1表示“单生”、0表示“非单生”;Edible列的1表示“无毒”、0表示“有毒”。

       数据定义如下:

X_train = np.array([[1,1,1],[1,0,1],[1,0,0],[1,0,0],[1,1,1],[0,1,1],[0,0,0],[1,0,1],[0,1,0],[1,0,0]])
y_train = np.array([1,1,0,0,1,0,0,1,1,0])

      (3)决策树步骤

         决策树构建分4步:①选择根节点特征;②计算所有分裂情况的信息增益并选择具有最高信息增益的特征;③根据选择的特征拆分数据集,创建树的左右分支;④继续重复分割过程,直到满足停止条件。

        信息增益(又称“交叉熵”)表示由于分裂导致的熵的变化,熵用来衡量信息混乱程度,熵大则乱,信息增益的一般计算公式如下:

Info \;\; gain=H(P_{root})-[W_{left}H(P_{left})+W_{right}H(P_{right})]

H(P_i)=-Plog_2(P_i)-(1-P_i)log_2(1-P_i)

 其中,Info gain为信息增益,H(P)为概率P的熵,P=k/nk为目标出现次数,n为总数。

      (4)代码实现决策树

         ①定义熵函数

def compute_entropy(y):entropy = 0.k = 0n = len(y)if n == 0:entropy = 0else:for i in range(n): k += y[i]       p = k / nif p == 0 or p == 1:entropy = 0else:entropy = -p * np.log2(p) - (1 - p) * np.log2(1 - p)return entropy

       ②定义分裂函数

def split_dataset(X, node_indices, feature):left_indices = []right_indices = []for id in node_indices:if X[id, feature] == 1:left_indices.append(id)else:right_indices.append(id)return left_indices, right_indices

       ③定义信息增益函数

def compute_information_gain(X, y, node_indices, feature):left_indices, right_indices = split_dataset(X, node_indices, feature)X_node, y_node = X[node_indices], y[node_indices]X_left, y_left = X[left_indices], y[left_indices]X_right, y_right = X[right_indices], y[right_indices]num_left = len(X_left)num_right = len(X_right)num_sum = num_left + num_rightw_left = num_left / num_sumw_right = num_right / num_sumentropy_w = w_left * compute_entropy(y_left) + w_right * compute_entropy(y_right)                                    information_gain = compute_entropy(y_node) - entropy_w  return information_gain

       ④定义最优分裂函数

def get_best_split(X, y, node_indices):       num_features = X.shape[1]best_feature = -1max_info_gain = 0for feature in range(num_features):info_gain = compute_information_gain(X, y, node_indices, feature)if info_gain > max_info_gain:max_info_gain = info_gainbest_feature = featurereturn best_feature

       ⑤定义决策树函数

tree = []def build_tree_recursive(X, y, node_indices, branch_name, max_depth, current_depth): # 停止分裂的条件if current_depth == max_depth:formatting = " "*current_depth + "-"*current_depthprint(formatting, "%s leaf node with indices" % branch_name, node_indices)returnbest_feature = get_best_split(X, y, node_indices) tree.append((current_depth, branch_name, best_feature, node_indices))formatting = "-"*current_depthprint("%s Depth %d, %s: Split on feature: %d" % (formatting, current_depth, branch_name, best_feature))# 在最优特征处分裂left_indices, right_indices = split_dataset(X, node_indices, best_feature)# 继续分裂build_tree_recursive(X, y, left_indices, "Left", max_depth, current_depth+1)build_tree_recursive(X, y, right_indices, "Right", max_depth, current_depth+1)

      (分支名称branch_name:'Root', 'Left', 'Right';formatting = "-"*current_depth用于生成与“current_depth”数量相等的“-”,用于缩进)

       ⑥开始构建决策树

build_tree_recursive(X_train, y_train, root_indices, "Root", max_depth=2, current_depth=0)

       运行以上代码,结果如下:

    

       决策树的分类结果如下图所示(自己用PPT绘的):

05 总结

      (1)决策树的构建包括:计算熵、信息增益、寻找最优分裂方式3个核心要点。

      (2) 决策树要解决的是多特征分类识别问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/32850.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常见的七大排序

目录 前言 冒泡排序 选择排序 插入排序 堆排序 希尔排序 快排 归并排序 前言 本文介绍七种常见的排序方式:冒泡排序,选择排序,插入排序,堆排序,希尔排序,快排,归并排序 冒泡排序 将每2…

Linux使用——查看发行版本、内核、shell类型等基本命令

先做快照 虚拟机中编辑网络 关机 普通账户和管理员账户 互相对照 localhost相当于IP 参数: 短格式:以减号(-)开头,参数字母 长格式:以2个减号(--)后跟上完整的参数单词 当前发行版本 [rootserver ~]# cat /etc/redhat-release Red Hat Enterprise Linux release 9.…

C++设计模式——Flyweight享元模式

一,享元模式简介 享元模式是一种结构型设计模式,它将每个对象中各自保存一份数据的方式改为多个对象共享同一份数据,该模式可以有效减少应用程序的内存占用。 享元模式的核心思想是共享和复用,通过设置共享资源来避免创建过多的实…

MSPM0G3507——定时器例程1——TIMA_periodic_repeat_count

以下示例以周期模式配置TimerA0,并使用重复计数功能每隔2秒切换一次GPIO。注意:重复计数功能特定于TimerA0实例,而不是其他TimerA实例。这里是一次500毫秒,重复了四次 主函数: #include "ti_msp_dl_config.h&quo…

20240621日志:大模型压缩-从闭源大模型蒸馏

目录 1. 核心内容2. 方法2.1 先验估计2.2 后验估计2.3 目标函数 3. 交叉熵损失函数与Kullback-Leibler(KL)损失函数 location:beijing 涉及知识:大模型压缩、知识蒸馏 Fig. 1 大模型压缩-知识蒸馏 1. 核心内容 本文提出在一个贝…

Program-of-Thoughts(PoT):结合Python工具和CoT提升大语言模型数学推理能力

Program of Thoughts Prompting:Disentangling Computation from Reasoning for Numerical Reasoning Tasks github:https://github.com/wenhuchen/Program-of-Thoughts 一、动机 数学运算和金融方面都涉及算术推理。先前方法采用监督训练的形式,但这…

发表在SIGMOD 2024上的高维向量检索/向量数据库/ANNS相关论文

前言 SIGMOD 2024会议最近刚在智利圣地亚哥结束,有关高维向量检索/向量数据库/ANNS的论文主要有5篇,涉及混合查询(带属性或范围过滤的向量检索)优化、severless向量数据库优化、量化编码优化、磁盘图索引优化。此外,也…

微信小程序入门2

微信开发者工具的安装方法 1.打开微信开发者工具下载页面 在微信小程序管理后台的左侧边栏中选择“开发工具”,然后选择“开发者工具”,即可找到微信开发者工具的下载页面。 2.打开微信开发者工具的下载链接页面 单击“下载” 按钮下载,即…

越复杂的CoT越有效吗?Complexity-Based Prompting for Multi-step Reasoning

Complexity-Based Prompting for Multi-step Reasoning 论文:https://openreview.net/pdf?idyf1icZHC-l9 Github:https://github.com/FranxYao/chain-of-thought-hub 发表位置:ICLR 2023 Complexity-Based Prompting for Multi-step Reason…

STM32 - LED灯 蜂鸣器

🚩 WRITE IN FRONT 🚩 🔎 介绍:"謓泽"正在路上朝着"攻城狮"方向"前进四" 🔎🏅 荣誉:2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评…

Pytest框架中pytest.mark功能

文章目录 mark功能 1. 使用pytest.mark.skip 2. 使用pytest.mark.skipif 3. 使用 pytest.mark.xfail 4使用pytest.mark.parametrize 5 使用pytest.mark.自定义标记 6 使用pytest.mark.usefixtures pytest 的mark功能在pytest官方文档是这样解释的: https://…

stm32学习笔记---GPIO输出(代码部分)LED闪烁/流水灯/蜂鸣器

目录 面包板的使用方法 第一个演示代码:LED闪烁 最后一次快速新建工程演示 点击新建工程 选择芯片 在工程文件夹中创建Start、Library、User Start文件夹的必备文件复制操作 Library文件夹的必备文件复制操作 User文件夹的必备文件复制操作 在keil中创建S…

关于数据登记的六点观察|数据与治理思享会(第1期)圆满举行

本文内容转载自 数据与治理专委会。 鼹鼠哥有幸在上周参与了数据大讲堂的首次线下活动,也做了个简短笔记 [最新]清华数据大讲堂线下思享会 因为上次是个人笔记,有些内容不方便些。既然今天官方公众号发出来了,就在这里把官方的内容也给大家转…

Repair LED lights

Repair LED lights 修理LED灯,现在基本用灯带,就是小型LED灯串联一起的 1)拆旧灯条,这个旧的是用螺丝拧的产品 电闸关掉。 2)五金店买一个,这种是磁铁吸附的产品 现在好多都是铝线啊。。。 小部件&#x…

【大数据离线项目四:什么是海豚调度?怎么使用可以将海豚调度应用到我们的大数据项目开发中?】

前言: 💞💞大家好,我是书生♡,今天主要和大家分享一下什么是海豚调度?怎么使用可以将海豚调度应用到我们的项目开发中?希望对大家有所帮助。 💞💞代码是你的画笔&#xf…

数组 (java)

文章目录 一维数组静态初始化动态初始化 二维数组静态初始化动态初始化 数组参数传递可变参数关于 main 方法的形参 argsArray 工具类sort 中的 comparable 和 comparatorcomparator 比较器排序comparable 自然排序 一维数组 线性结构 静态初始化 第一种:int[] a…

IDEA插件推荐-CodeGeex

功能:这个插件可以实现快速翻译代码,json文件格式转换,代码语言类型转换。 安装方式:File->Settings->Plugins->MarketPlace->搜索“CodeGeex”即可 (CodeGeex功能展示) (CodeGeex…

模拟算法讲解

模拟算法是一种基于实际情况模拟的算法,通过模拟现实世界中的系统或过程,来研究它们的性质和行为。模拟算法可以用于解决各种问题,包括物理模拟、经济模拟、社会模拟等。 模拟算法的基本步骤包括: 定义问题:明确需要模…

【STM32c8t6】AHT20温湿度采集

【STM32c8t6】AHT20温湿度采集 一、探究目的二、探究原理2.1 I2C2.1. 硬件I2C2.1. 软件I2C 2.2 AHT20数据手册 三、实验过程3.1 CubeMX配置3.2 实物接线图3.3 完整代码3.4 效果展示 四、探究总结 一、探究目的 学习I2C总线通信协议,使用STM32F103完成基于I2C协议的A…

android串口助手apk下载 源码 演示 支持android 4-14及以上

android串口助手apk下载 1、自动获取串口列表 2、打开串口就开始接收 3、收发 字符或16进制 4、默认发送at\r\n 5、android串口助手apk 支持android 4-14 (Google seral port 太老) 源码找我 需要 用adb root 再setenforce 0进入SELinux 模式 才有权限…