基于matlab的不同边缘检测算子的边缘检测

1 原理

1.1 边缘检测概述

边缘检测是图像处理和计算机视觉中的基本问题,其目的在于标识数字图像中亮度变化明显的点。这些变化通常反映了图像属性的重要事件和变化,如深度不连续、表面方向不连续、物质属性变化和场景照明变化等。边缘检测在特征提取中起着关键作用,因为它能够大幅度地减少数据量,并剔除不相关的信息,同时保留图像重要的结构属性。

1.2 Prewitt算子

Prewitt算子是一种一阶微分算子的边缘检测。它利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

公式表示:
对于数字图像f(x,y),Prewitt算子的定义如下:
G(i) = | [f(i-1,j-1) + f(i-1,j) + f(i-1,j+1)] - [f(i+1,j-1) + f(i+1,j) + f(i+1,j+1)] |
G(j) = | [f(i-1,j+1) + f(i,j+1) + f(i+1,j+1)] - [f(i-1,j-1) + f(i,j-1) + f(i+1,j-1)] |

1.3 Roberts算子

Roberts算子由Lawrence Roberts在1963年提出,基于离散微分的原理,通过计算图像上相邻像素点之间的差异来检测边缘。它使用两个2x2的模板进行卷积操作。

模板表示:
Gx = [[1, 0], [0, -1]]
Gy = [[0, 1], [-1, 0]]

1.4 Sobel算子

Sobel算子是一种一阶导数的边缘检测算子,在算法实现过程中,通过3×3模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

公式表示:
Sx = (Z1 + 2Z2 + Z3) - (Z7 + 2Z8 + Z9)
Sy = (Z1 + 2Z4 + Z7) - (Z3 + 2Z6 + Z9)

1.5 LoG(Laplacian of Gaussian)算子

LoG算子结合了高斯平滑和拉普拉斯算子。首先使用高斯滤波器对图像进行平滑处理,然后利用拉普拉斯算子进行边缘检测。这样可以减少噪声对边缘检测的影响。

高斯平滑公式(见参考文章7的高斯滤波公式)
LoG算子公式(见参考文章6的LoG函数表达式)

1.6 Canny边缘检测算法

Canny边缘检测算法是一个多级检测算法,结合了高斯滤波、梯度的强度和方向、双阈值处理和边缘跟踪等技术。其目标是找到一个最优的边缘检测算法。

由于Canny边缘检测算法涉及多个步骤和复杂的计算,其完整的公式和算法流程较为复杂,无法在此处直接给出。但基本思想是利用高斯滤波平滑图像,计算梯度的强度和方向,然后通过双阈值处理和边缘跟踪来确定边缘。

以上即为边缘检测及其常见算子的简要介绍和原理公式。在实际应用中,可以根据具体需求和图像特性选择合适的边缘检测算法。

2 代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%% 图像预处理-高斯滤波与图像去噪 
I = imread('test.jpeg');  
if size(I, 3) == 3  % 如果是彩色图像,转换为灰度图像  I = rgb2gray(I);  
end  
I = im2double(I); % 将图像转换为双精度,范围在[0, 1]    
% 对图像进行高斯滤波  
h = fspecial('gaussian', [5 5], 1); % 创建一个5x5的高斯滤波器,标准差为1  
I_gaussian = imfilter(I, h);    
% 绘制原始图像和原始直方图  
figure;  
subplot(3, 2, 1),imshow(I);  
title('原始图像');   
subplot(3, 2, 2),imhist(I);  
title('原始直方图');  
%  绘制高斯滤波后的图像和对应的直方图  
subplot(3, 2, 3),imshow(I_gaussian);  
title('高斯滤波后的图像');  
subplot(3, 2, 4),imhist(I_gaussian);  
title('高斯滤波后的直方图');   
% 去噪使用中值滤波  
I_denoised = medfilt2(I); % 使用中值滤波进行去噪    
% 绘制去噪后的图像和对应的直方图  
subplot(3, 2, 5),imshow(I_denoised);  
title('去噪后的图像');  
subplot(3, 2, 6),imhist(I_denoised);  
title('去噪后的直方图');  
%% %% 边缘检测
% 读取图像  
I6 = imread('test.jpeg'); 
I6 = rgb2gray(I6); % 转换为灰度图像   
% 初始化figure和subplot  
figure;  
% 绘制原始图像作为对比  
subplot(3, 2, 1);  
imshow(I6);  
title('原始图像');    
% Prewitt边缘检测  
BW_prewitt = edge(I6, 'prewitt');  
subplot(3, 2, 2);  
imshow(BW_prewitt);  
title('Prewitt 边缘检测');    
% Roberts边缘检测  
BW_roberts = edge(I6, 'roberts');  
subplot(3, 2, 3);  
imshow(BW_roberts);  
title('Roberts 边缘检测');  
% Sobel边缘检测  
BW_sobel = edge(I6, 'sobel');  
subplot(3, 2, 4);  
imshow(BW_sobel);  
title('Sobel 边缘检测');   
% LoG边缘检测  
BW_log = edge(I6, 'log');  
subplot(3, 2, 5);  
imshow(BW_log);  
title('LoG 边缘检测');   
% Canny边缘检测(需要设置阈值)  
BW_canny = edge(I6, 'canny', [0.4, 0.7]); % 这里设置了高低两个阈值  
subplot(3, 2, 6);  
imshow(BW_canny);  
title('Canny 边缘检测');  
% 添加标签和标题  
set(gcf, 'Name', '边缘检测算子比较');
%% 图像预处理-灰度化与图像反白
I1 = imread('test.jpeg');  
figure;
subplot(2,2,1);%用subplot建立多个子图
imshow(I1);%用imshow显示图像I
title('原始彩色图像');  
J=rgb2gray(I1);%将彩色图像工转换为灰度图像J
subplot(2,2,2);imshow(J);% 用imshow显示图像J
title('灰度图像');  
subplot(2,2,3);imhist(J);% 计算和显示灰度图像J的灰度直方图
title('灰度直方图');  
Ave = mean2(J);%用mean2函数求图像J的均值
SD = std2(double(J));%用std2函数求图像J的均值
s= size(J);%图像大小为s(1)×s(2)
all_white = 255*ones(s(1),s(2));%设置全部为白色灰度255
all_white_uint8=uint8(all_white);%将double类型矩阵转化为uint8类型矩阵
K= imsubtract(all_white_uint8,J);%图像相减得反白图像K
subplot(2,2,4);imshow(K);%用imshow显示图像K
title('反白图像');  %% 线性变换进行图像增强
I2= imread('test.jpeg');
J2=rgb2gray(I2);
figure;
subplot(2,2,1), imshow(J2) ;
title('原始图像');  
subplot(2,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图');  
K = imadjust(J2,[0.4 0.6],[]);%使用imadjust函数进行灰度的线性变换
subplot(2,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(2,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');%% 伽马变换进行图像增强
figure;
subplot(3,2,1), imshow(J2) ;
title('原始图像');  
subplot(3,2,2), imhist(J2) ;%显示原始图像的直方图
title('原始灰度直方图'); 
gamma = 0.5;
I_gamma = imadjust(J2, [], [], gamma);  
subplot(3,2,3),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(3,2,4),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
%% % 对数变换进行图像增强  
c = 0.5; % 控制参数,用于避免log(0)  
I_log = c * log(1 + double(J2)) / log(256);  
I_log = im2uint8(I_log);    
subplot(3,2,5);  
imshow(I_log);  
title('对数变换后的图像');
subplot(3,2,6);  
imhist(I_log);
title('对数变换后的灰度直方图');
%% 
figure('Position',[50 50 800 600])
subplot(4,2,1), imshow(J2);
title('原始图像');  
subplot(4,2,2), imhist(J2);
title('原始灰度直方图'); 
subplot(4,2,3), imshow(K);
title('线性变换后的灰度图像');  
subplot(4,2,4),imhist(K)%显示变换后图像的直方图
title('线性变换后的灰度直方图');
subplot(4,2,5),imshow(I_gamma); 
title('伽马变换后的灰度图像'); 
subplot(4,2,6),imhist(I_gamma);
title('伽马变换后的灰度直方图'); 
subplot(4,2,7),imshow(I_log);  
title('对数变换后的图像');
subplot(4,2,8),imhist(I_log);
title('对数变换后的灰度直方图');
%% 直方图均衡化进行图像增强
I3 = imread('test.jpeg'); % 读取图像  
I_gray = rgb2gray(I3); % 转换为灰度图像    
% 直方图均衡化  
I_eq = histeq(I_gray);    
% 显示原始图像和增强后的图像  
figure;
subplot(2, 2, 1),imshow(I_gray);
title('原始图像'); 
subplot(2, 2, 2);  
imhist(I_gray),title('原始灰度直方图'); 
subplot(2, 2, 3),imshow(I_eq);  
title('直方图均衡化后的图像');
subplot(2, 2, 4),imhist(I_eq);  
title('直方图均衡化后的灰度直方图');

3 运行结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/32497.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OSPF 2类LSA详解

概述 上图为2类LSA : Network LSA 的报文格式 , 我们重点关注3个报文字段即可 , 其他内容没有实际的信息 Link State ID : DR的接口IP地址 Network Mask : 该MA网络的掩码 Attached Router : 连接在该MA网络的所有路由器的Router ID 2类LSA一定是DR产生的 , 关于OSPF DR的细节…

数据结构之二叉树的超详细讲解(3)--(二叉树的遍历和操作)

个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 数据结构之二叉树的超详细讲解(3)--(二叉树链式结构的实现) 收录于专栏【数据结构初阶】 本专栏旨在分享学习数据结构学习的一点学习笔记,欢迎大家在…

展讯-QMI8658和气压传感器驱动调试

1.调试QMI8658 参考demo,添加QMI8610相关内容 当前驱动路径位于:bsp/modules/input/misc/qmi8610/qmi8610.c 编译使用make sockoimage 用fastboot烧录 1.确定驱动被正常加载 代码添加之后,首先确定有没有进入当前驱动文件 dmesg |grep …

如何用GO语言实现冒泡排序算法?

本章教程,介绍一下如何用GO语言实现基础排序算法中的冒泡排序。 一、程序代码 package mainimport ("fmt""math/rand""time" )// bubbleSort 函数实现冒泡排序算法 func bubbleSort(arr []int) {n

32 - 判断三角形(高频 SQL 50 题基础版)

32 - 判断三角形 select *,if(xy>z and xz>y and zy > x,Yes,No) triangle fromTriangle;

Day9 —— 大数据技术之ZooKeeper

ZooKeeper快速入门系列 ZooKeeper的概述什么是ZooKeeper?ZooKeeper的特点和功能使用ZooKeeper的原因 ZooKeeper数据模型ZooKeeper安装ZooKeeper配置ZooKeeper命令行操作常见服务端命令 ZooKeeper的概述 什么是ZooKeeper? ZooKeeper是一个开源的分布式协…

jarvisoj_level2

首先检查checksec 可以看见no canary found 说明可能是栈溢出 运行一下程序 随便输一个,得到hello world(感觉这一步好像没啥用,没有RE那用) IDA 32 打开 后门 漏洞点 buf: 代码思路:利用溢出,把buf填满,然后构造程序,得到获取shell的目的 exp来自 BUUCTF—jarvisoj_level…

【Qt】学习Day1

文章目录 Qt简介创建第一个Qt程序创建过程介绍main函数工程文件头文件控件源文件快捷键按钮控件常用API对象树坐标系 信号和槽自定义信号自定义槽函数触发自定义的信号案例-下课后,老师触发饿了信号,学生响应信号,请客吃饭重载信号连接信号La…

containerd的客户端工具ctr命令

containerd的客户端工具ctr命令 类似docker为docker-shim容器运行时的客户端工具,ctr 是 containerd 的客户端工具,安装containerd作为容器运行时后,会自动安装ctr。 rootmaster1:~# ctr -v ctr github.com/containerd/containerd 1.7.121.…

Paxos分布式共识算法

Paxos分布式共识算法 一、简介 Paxos算法是由莱斯利兰伯特(Leslie Lamport)于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。它主要用于解决分布式系统中如何就某个值达成一致,并保证整个系统的一致性,即使在部分节点发生故障的情况下…

论文浅尝 | 基于生成模型的多模态实体链接

笔记整理:郭凌冰,浙江大学博士,研究方向为知识图谱 链接:https://arxiv.org/abs/2306.12725 1. 动机 多模态实体链接(Multimodal Entity Linking,MEL)旨在将带有多模态上下文的提及映射到知识库…

[SAP ABAP] 运算符

1.算数运算符 算术运算符描述加法-减法*乘法/除法MOD取余 示例1 输出结果: 输出结果: 2.比较运算符 比较运算符描述示例 等于 A B A EQ B <> 不等于 A <> B A NE B >大于 A > B A GT B <小于 A < B A LT B >大于或等于 A > B A GE B <小…

keep-alive实现页面缓存

<!--router-view 实现页面缓存--> <router-view v-slot"{Component}"><keep-alive :max"8"><component :is"Component"></component></keep-alive> </router-view>

Ansible调优之 Pipelining(任务流水线)详解

目录 Ansible 中的 Pipelining&#xff08;任务流水线&#xff09;详解Pipelining 的工作原理如何启用 PipeliningPipelining 的影响使用场景 什么是 requiretty&#xff1f;启用 requiretty 的影响禁用 requiretty 的方法 Ansible 中的 Pipelining&#xff08;任务流水线&…

2024年6月23日 十二生肖 今日运势

小运播报&#xff1a;2024年6月23日&#xff0c;星期日&#xff0c;农历五月十八 &#xff08;甲辰年庚午月戊午日&#xff09;&#xff0c;法定节假日。今天国际奥林匹克日&#xff0c;坚不可摧的意志&#xff0c;披荆斩棘的豪情&#xff0c;永远值得拥有&#xff01; 红榜生…

算法金 | 统计学的回归和机器学习中的回归有什么差别?

大侠幸会&#xff0c;在下全网同名「算法金」 0 基础转 AI 上岸&#xff0c;多个算法赛 Top 「日更万日&#xff0c;让更多人享受智能乐趣」 统计学中的回归 目标&#xff1a; 主要用于解释和推断自变量&#xff08;independent variables&#xff09;和因变量&#xff08;de…

array_key_exists() expects parameter 2 to be array, null given

公众号获取微信服务器IP地址 错误代码如下 public function getwxIP(){//获取微信服务器IP地址$accessToken $this->getwxoaiAccessToken();$userToken new UserToken();$result $userToken->curl_get("https: //api.weixin.qq.com/cgi-bin/get_api_domain_ip…

Chromium 调试指南2024 - 远程开发(上)

1. 引言 在现代软件开发过程中&#xff0c;远程开发已成为一种流行的工作方式。随着云计算和网络技术的迅猛发展&#xff0c;开发者不再局限于本地环境进行编码、测试和调试&#xff0c;而是可以借助远程服务器强大的计算资源和灵活的配置进行开发工作。远程开发不仅提升了开发…

PyTorch nn.CrossEntropyLoss() 交叉熵损失函数详解和要点提醒

文章目录 前置知识nn.CrossEntropyLoss() 交叉熵损失参数数学公式带权重的公式&#xff08;weight&#xff09;标签平滑&#xff08;label_smoothing&#xff09; 要点 附录参考链接 前置知识 深度学习&#xff1a;关于损失函数的一些前置知识&#xff08;PyTorch Loss&#x…

如何在Java中实现高效的文件读写

如何在Java中实现高效的文件读写 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 在Java开发中&#xff0c;文件读写是一项常见且必不可少的操作。然而&#x…