深度神经网络——决策树的实现与剪枝

概述

决策树 是一种有用的机器学习算法,用于回归和分类任务。 “决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。

这是决策树的快速定义,但让我们深入了解决策树的工作原理。 更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。

决策树的结构

决策树的结构类似于流程图,从一个起点或根节点开始,根据过滤条件的判断结果,逐级分支,直至达到树的末端,即叶子节点。每个内部节点代表一个特征的测试条件,而叶子节点则代表数据点的分类标签。
在这里插入图片描述
决策树是一种层次化的决策模型,它通过一系列的问题将数据分类。以下是决策树结构的关键组成部分和特性:

  1. 根节点(Root Node)

    • 决策树的起点,代表整个数据集。
  2. 内部节点(Internal Nodes)

    • 表示决策问题或属性测试。每个内部节点对应一个特征(或属性)的分割点。
  3. 分支(Branches)

    • 从每个内部节点延伸出来,代表测试的不同结果。分支的数量取决于该节点特征的可能值。
  4. 叶子节点(Leaf Nodes)

    • 树的末端,代表最终决策或分类结果。在分类问题中,叶子节点通常包含类别标签;在回归问题中,它们包含预测值。
  5. 路径(Path)

    • 从根节点到任一叶子节点的连接序列,代表一系列决策规则。
  6. 分割(Split)

    • 在内部节点处,根据特征值将数据集分割成子集的过程。
  7. 特征(Feature)

    • 用于分割数据的特征或属性。
  8. 阈值(Threshold)

    • 用于确定数据点是否沿着特定分支的值。
  9. 纯度(Purity)

    • 衡量节点中数据点是否属于同一类别的指标。高纯度意味着节点中的数据点属于同一类别。
  10. 深度(Depth)

    • 从根节点到树中任意节点的最长路径长度。
  11. 宽度(Width)

    • 树中叶子节点的最大数量。
  12. 树高(Tree Height)

    • 从根节点到最远叶子节点的边数。
  13. 基尼指数(Gini Index)

    • 用于分类树的内部节点评估,衡量节点不纯度的指标。
  14. 熵(Entropy)

    • 另一种衡量节点不纯度的指标,常用于构建分类树。
  15. 信息增益(Information Gain)

    • 通过分割获得的信息量,用于选择最佳分割点。
  16. 决策规则(Decision Rules)

    • 从根到叶的路径上的一系列决策,用于对数据点进行分类。

决策树的结构使得模型不仅能够进行预测,还能够解释预测背后的逻辑。这种可解释性使得决策树在需要模型透明度的应用中非常有用。然而,决策树也容易过拟合,特别是当树变得非常深和复杂时。因此,剪枝技术通常用于简化决策树,提高其泛化能力。

决策树算法

决策树的构建过程采用递归二元分割算法,该算法通过评估不同特征对数据集进行分割的效果,选择最佳分割点。分割的目的是使得每个子集尽可能地“纯”,即包含的数据点属于同一类别或具有相似的响应值。

分割成本的确定

决策树是一种常用用于分类和回归任务。在回归问题中,决策树的目标是预测一个连续的输出值。如果你使用决策树进行回归预测,并希望计算预测误差,你可以使用均方误差(Mean Squared Error, MSE)作为评估指标。MSE 衡量的是模型预测值与实际值之间差异的平方的平均值。

对于决策树来说,计算 MSE 的过程如下:

  1. 使用决策树模型进行预测:给定一个训练好的决策树模型,对于每个数据点,使用模型进行预测,得到预测值 prediction_i

  2. 计算误差:对于每个数据点,计算其实际值 y_i 与预测值 prediction_i 之间的差异,然后计算这个差异的平方。

  3. 求和:将所有数据点的误差平方求和。

  4. 平均:将求和结果除以数据点的总数 n,得到 MSE。

数学公式表示为:

M S E = 1 n ∑ i = 1 n ( y i − prediction i ) 2 {MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \text{prediction}_i)^2 MSE=n1i=1n(yipredictioni)2

其中:

  • n n n 是数据集中的样本数量。
  • y i y_i yi是第i` 个样本的实际值。
  • p r e d i c t i o n i {prediction}_i predictioni 是模型对第 i 个样本的预测值。

在 Python 中,如果使用 scikit-learn 库,可以很容易地计算决策树模型的 MSE。以下是一个简单的例子:

from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
import numpy as np# 假设 X 是特征数据,y 是目标变量
X = ...  # 特征数据
y = ...  # 目标变量# 创建决策树回归模型
tree_reg = DecisionTreeRegressor()# 训练模型
tree_reg.fit(X, y)# 进行预测
y_pred = tree_reg.predict(X)# 计算 MSE
mse = mean_squared_error(y, y_pred)
print(f"Mean Squared Error: {mse}")

MSE 仅适用于回归问题。如果你在处理分类问题,可能需要考虑其他指标,如准确率、召回率、F1 分数等。此外,MSE 对异常值敏感,因此在某些情况下,你可能还想使用其他指标,如平均绝对误差(Mean Absolute Error, MAE)来评估模型性能。

决策树的剪枝

决策树的剪枝是防止模型过拟合的重要技术。过拟合的决策树可能会在训练数据上表现良好,但在未见过的数据上泛化能力差。剪枝通过移除树中的一些分支来简化模型,从而提高其在新数据上的预测性能。以下是几种常见的决策树剪枝方法:

  1. 预剪枝(Pre-pruning)

    • 在构建决策树的过程中,预剪枝会在树生长的每个阶段评估是否应该停止分裂。如果某个节点的分裂不能显著提高模型的性能,那么这个节点将被标记为叶子节点,不再进一步分裂。
  2. 后剪枝(Post-pruning)

    • 后剪枝是在决策树完全生长完成后进行的。它从树的叶子节点开始,评估移除节点对模型性能的影响。如果移除某个节点后的模型性能没有显著下降,那么这个节点将被删除。
  3. 错误率降低剪枝(Reduced-Error Pruning)

    • 这种方法是在后剪枝的基础上,通过比较剪枝前后的错误率来决定是否剪枝。如果剪枝后的模型在交叉验证集上的错误率没有增加,或者增加的幅度在可接受范围内,那么剪枝是成功的。
  4. 代价复杂性剪枝(Cost-Complexity Pruning)

    • 代价复杂性剪枝是一种后剪枝技术,它通过引入一个参数来平衡模型的复杂度和预测误差。这种方法允许模型在剪枝过程中保持一定程度的复杂性,同时减少过拟合的风险。
  5. 最小描述长度剪枝(Minimum Description Length Pruning)

    • 这种方法基于信息论原理,试图找到能够最小化描述模型和数据所需的信息量(即描述长度)的树。它考虑了模型的复杂性和预测误差,以找到最佳的剪枝点。
  6. 基于规则的剪枝

    • 在某些情况下,可以使用领域知识来定义规则,以指导剪枝过程。例如,如果某个特征在数据集中的分布非常不均匀,可以考虑剪枝掉依赖于该特征的分支。

使用决策树的注意事项

决策树在需要快速分类且计算时间受限的场景下非常有用。它们能够清晰地展示数据集中哪些特征最具预测力,并且与许多其他机器学习算法相比,决策树的规则更易于解释。此外,决策树能够处理分类变量和连续变量,减少了预处理的需求。

然而,决策树在预测连续属性值时可能表现不佳,且在类别众多而训练样本较少的情况下,分类准确性可能降低。

通过深入理解决策树的工作原理和特性,我们可以更好地判断在机器学习项目中何时使用它们,以及如何优化它们的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/31415.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web开发的未来:深入Symfony框架的全方位指南

Symfony是一款强大的PHP框架,用于开发高性能的Web应用。它提供了一套完整的工具和API,帮助开发者构建从简单的博客到复杂的企业级应用。本文将全面介绍Symfony框架的基本概念、使用方法、主要作用以及注意事项。 一、Symfony框架简介 1. Symfony的起源 …

58.最后一个单词的长度

给你一个字符串 s,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大 子字符串 。 示例 1: 输入:s "Hello World" 输出&#xff…

数据结构5---矩阵和广义表

一、矩阵的压缩存储 特殊矩阵:矩阵中很多值相同的元素并且它们的分布有一定的规律。 稀疏矩阵:矩阵中有很多零元素。压缩存储的基本思想是: (1)为多个值相同的元素只分配一个存储空间; (2)对零元素不分配存储空间。 1、特殊矩阵的压缩存储 (1)对称矩…

【机器学习】必会降维算法之:随机投影(Random Projection)

随机投影(Random Projection) 1、引言2、随机投影(Random Projection)2.1 定义2.2 核心原理2.3 应用场景2.4 实现方式2.5 算法公式2.6 代码示例 3、总结 1、引言 小屌丝:鱼哥,降维算法还没讲完呢。 小鱼&a…

浙江保融科技2025实习生校招校招笔试分享

笔试算法题一共是有4道,第一道是手搓模拟实现一个ArrayList,第二道是判断字符串是否回文,第三道是用代码实现1到2种设计模式。 目录 一.模拟实现ArrayList 二.判断字符串是否回文 ▐ 解法一 ▐ 解法二 ▐ 解法三 三.代码实现设计模式 一…

网络协议安全:TCP/IP协议栈的安全问题和解决方案

「作者简介」:北京冬奥会网络安全中国代表队,CSDN Top100,就职奇安信多年,以实战工作为基础对安全知识体系进行总结与归纳,著作适用于快速入门的 《网络安全自学教程》,内容涵盖Web安全、系统安全等12个知识域的一百多个知识点,持续更新。 这一章节我们需要知道TCP/IP每…

大模型扫盲系列——大模型实用技术介绍_大模型底层技术是哪些

Gemma模型架构和参数计算 近期,大模型相关的技术和应用层出不穷,各个方向的论文百花齐放,底层的核心技术是大家公认的精华部分。本文从技术的角度聚焦大模型的实战经验,总结大模型从业者关注的具体方向以及相关发展,帮…

干货 | 如何进行群体DNA甲基化分析

目前,针对群体的研究基本上还是以重测序为主,基于对遗传多样性丰富的自然群体中的个体进行全基因组重测序,研究物种遗传进化多样性,结合准确的目标性状的表型数据及统计方法进行全基因组关联分析,可对动植物复杂农艺性…

网络性能测试工具 iperf

简介 Iperf 是一个网络性能测试工具,可以测试最大TCP和UDP带宽性能,具有多种参数和UDP特性,可以根据需要调整,可以报告带宽、延迟抖动和数据包丢失。 官网地址:iPerf - Download iPerf3 and original iPerf pre-comp…

shell 脚本批量导入、导出docker images

目录: 需要将运行中的docker 容器批量出,并在新的主机上批量导入。 创建批量导出脚本 export_docker_images.sh #!/bin/bash# 检查 Docker 是否在运行 if ! docker info > /dev/null 2>&1; thenecho "Docker 似乎没有运行。请确保 Dock…

MEME使用-motif分析(生物信息学工具-24)

01 背景 Motif分析是一种在生物信息学和计算生物学中广泛应用的技术,用于识别DNA、RNA或蛋白质序列中具有生物学功能的短保守序列模式(motif)。这些motif通常与特定的生物学功能相关,如DNA中的转录因子结合位点、RNA中的剪接位点…

最新Springboot小程序医院核酸检测服务系统

采用技术 最新Springboot小程序医院核酸检测服务系统的设计与实现~ 开发语言:Java 数据库:MySQL 技术:SpringBootMyBatis 工具:IDEA/Ecilpse、Navicat、Maven 页面展示效果 管理员页面 医护人员管理 普通管理员管理 接种进…

稳定安全生产设备日志采集工具

免费试用下载: Gitee下载 最新版本 优势: A. 开箱即用. 解压直接运行.不需额外安装. B. 批管理设备. 设备配置均在后台管理. C. 无人值守 客户端自启动,自更新. D. 稳定安全. 架构简单,内存占用小,通过授权访问.

vector oj题 和 位运算

知识点1: lowbit(x) 简介:众所周知,lowbit()操作是算法竞赛中的高级技巧,特别是高级数据结构,线段树的核心,还有什么二进制与位运算题目,而本文就用最通俗易懂的话,来教会大家lowbi…

mysql手工命令备份与自动备份

1、手工备份数据库数据 进入命令目录:cd /usr/local/mysql/bin,确保该目录下有mysqldump 然后在命令行 输入 mysqldump -u root -p dbname > dbname_backup_20240612.sql 注意,这里的dbname 是指你想要备份的数据库的名字。 通过这个命…

go-zero 安装

1.安装goctl 工具 go install github.com/zeromicro/go-zero/tools/goctllatest 2.安装protoc goctl env check --install --verbose --force 3.创建项目总目录 gozero_stusy (此目录为总目录,下面有多个服务,每个服务一个目录 比如 use…

【MySQL系列】MySQL 字符集的演变与选择

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

[信号与系统]有关滤波器的一些知识背景

前言 最近在看FIR和IIR,本文作为前置,需要在理解这两种滤波器之前阅读。 本文内容会详细讲述一下有关滤波器的技术要求。 选频滤波器的频率响应 选频滤波器(Selective Frequency Filter)的频率响应是描述该滤波器在不同频率下…

配置yum本地源脚本

在应对无网络或者其它特殊情况下,使用本地yum源 ①查看Linux系统版本,不同的版本yum仓库的挂载路径有所不同 > 以repodata所在目录为准 ②将光盘挂载到手动挂载点/mnt下面 ③将原有yum源仓库进行迁移备份 ④配置本地yum源仓库信息并初始化 #!/us…

中国企业数字化转型现状、趋势和挑战

一、来自不同行业、不同所有制的145家企业的调查 为了了解中国企业数字化转型的现状、趋势和挑战,2022年我们完成了一次在线问卷调查。 受访企业达145家,国内企业111家,占比77%(其中央企占总比例51%),民营…