从 0 打造私有知识库 RAG Benchmark 完整实践

背景介绍

最近从 0 构建了一个大模型知识库 RAG 服务的自动化 Benchmark 评估服务,可以基于私有知识库对 RAG 服务进行批量自动化测试与评估。本文是对这个过程的详细记录。

本文实际构建的是医疗行业知识库,基于高质量的医学指南和专家共识进行构建。而实际的问答对也基础知识库已有文档生成,避免参考源不存在导致的大模型幻觉,可以更加客观反映 RAG 服务的能力。当然整体的构建流程是与行业无关的,可以参考构建其他的测评知识库。

RAG Benchmark 评估

为什么需要 RAG 评估

从早期实现 从开发到部署,搭建离线私有大模型知识库 时就提到过 RAG 的评估体系的构建,RAG 评估体系不可或缺的原因如下:

  1. RAG 服务的质量评估困难,因为 RAG 服务最终输出的就是一段针对问题的文本回答,开发人员可能会缺乏行业背景知识,无法给出客观评估;
  2. RAG 服务是一个需要持续迭代的服务,优化手段多种多样。如何验证优化手段的有效性,需要存在一个量化的判断标准,否则可能会负优化;
为什么不用通用 Benchmark

目前针对 RAG 服务的部分环节的 Benchmark 是存在的,比如针对大模型有 Lmsys Benchmark,针对 Embedding 模型有 mteb leaderboard,但是很少有完整的针对 RAG 提供的 Benchmark,我理解原因如下:

  1. RAG 服务的质量与知识库内容存在很大关系,RAG 服务目前没有完全标准的知识库以及对应的高质量问答对;
  2. RAG 服务的自动化文本评测相对困难,很难根据问题和答案给出完全客观的打分;

同时考虑到外部的公共 Benchmark 数据集缺失行业信息,无法基于我们期望的行业知识进行评测,最终选择了自建大模型知识库自动化 Benchmark 评测服务。

自动化评估构建流程

自动化评估 Benchmark 构建流程如下所示:
请添加图片描述

构建测试问答对

为了构建自动化测试,首先需要筛选出合适的行业文档信息,期望文档本身的质量比较高。在医疗领域,我们选择的是医学指南和专家共识,这样可以避免原始文档质量差带来的结果不佳的问题。

接下来需要根据这些文档生成对应的问答对。问答对需要能根据知识库可以得到正确答案,否则就很难验证 RAG 服务的能力了。

但是构建问答对十分耗时,最终选择了提供文档给线上大模型,基于线上的大模型自动生成问题,答案以及答案参考的原文片段。通过这种方式可以大幅减轻人工总结文档生成问题和答案的工作量。人工只需要参考大模型给出的原文片段判断问题和答案的合理性即可。实际的问答对如下所示:
请添加图片描述

人工过滤掉不合适的问题,以及答案有误的情况,这样就得到了一份可用的知识库,以及对应的问答对。我利用这种方式构建了包含 100 份高质量行业文档的知识库和 1000 个标准问答对。

批量测试

批量的自动化测试是基于 ragas 实现的,如果期望选择其他 RAG 自动化评测库,可以参考 之前的文章 查看其他可选方案。

批量测试基于下面的代码生成自动化测试的数据集:

import asynciofrom datasets import Datasetasync def batch_evaluate_chat(questions: list[str], ground_truths: Optional[list] = None):# 批量调用 RAG 服务接口获取回答与对应的上下文tasks = [search_knowledge_base_iter(q, ground_truth)for q, ground_truth in zip(questions, ground_truths)]results = await asyncio.gather(*tasks)question_list, answer_list, contexts_list, ground_truth_list = [], [], [], []for question, answer, contexts, ground_truth in results:question_list.append(question)answer_list.append(answer)contexts_list.append(contexts)ground_truth_list.append(ground_truth)# 构建测试获得的问题,答案,上下文以及标准答案data_samples = {"question": question_list,"answer": answer_list,"contexts": contexts_list,"ground_truth": ground_truth_list,}return Dataset.from_dict(data_samples), data_samples
大模型评分

在实际测试时,我期望获得所有测试问答对的详细信息,包括测试项中的问题,答案,上下文,正确答案以及各个评分项的得分。但是 ragas 只会给出测试数据集整体的平均得分,因此实际调用上面的 batch_evaluate_chat() 构建测试数据集时,会基于单个问题构建了自动化测试数据集,之后所有问题独立进行评分。具体如下所示:

from ragas import evaluate
from ragas.metrics import (answer_correctness,answer_relevancy,context_precision,context_recall,context_relevancy,faithfulness,
)# 每个问题构造对应的数据集,独立评分,得到每个问题详细评分async def do_evaluate(question, ground_truth, llm, embedding_model):questions = [question]ground_truths = [ground_truth] if ground_truth else Nonedataset, original_dataset = await batch_evaluate_chat(questions, ground_truths)result = evaluate(dataset,# 设置相关评测指标 https://docs.ragas.io/en/stable/concepts/metrics/index.htmlmetrics=[context_relevancy,faithfulness,answer_relevancy,answer_correctness,context_recall,context_precision,],llm=llm,embeddings=embedding_model,)# 将原始的问答对与结果合并在一起,方便后续生成详细结果evaluate_detail = dict()for key in original_dataset:evaluate_detail[key] = original_dataset[key][0]evaluate_detail.update(result)return evaluate_detail

实际选择的指标除了经典的三维度的指标 context_relevancy, faithfulnessanswer_relevancy,从实用角度出发,补充了下面指标:

  • answer_correctness: 根据生成答案与标准答案相比,得出生成答案的准确性,可以整体了解 RAG 服务的可靠性;
  • context_recall: 根据上下文与标准答案相比,用于衡量正确答案是否被正确召回,可以判断 RAG 的检索能力;
  • context_precision: 根据上下文与标准答案以及问题综合判断,确认召回的正确内容是否排名靠前,可以判断 RAG 检索的排序是否合适;

最终整体的评估维度如下所示:
请添加图片描述

测试结果分析

在完成构建了自动化测试之后,最终得到的结果导出为 excel,类似如下所示:
请添加图片描述
在得到大模型完整的自动化测试的结论后,还是需要人工进行分析,主要关注两部分的优化:

  1. 自动化测试指标的表征能力,现有的自动化测试指标是否正确反映 RAG 服务本身存在的问题,这一部分主要涉及自动化测试流程的优化;
  2. RAG 模块的优化,通过指标以及人工归因,确定 RAG 服务各个模块中存在的待优化问题,并根据影响范围确定优化的优先级;

总结

本文是对构建完整的 RAG 自动化评估 benchmark 的介绍,通过上面的流程,可以从 0 构建一个符合要求的自动化评估服务,在客观的数据的指导下定位 RAG 服务中存在的问题,从而迭代优化重点问题,提升 RAG 服务的质量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/30707.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DataWorks Copilot:大模型时代数据开发的新范式

导读 DataWorks 是阿里云一站式智能化数据开发与治理平台,支持搭配MaxCompute/Hologres/AnalyticDB/StarRocks/EMR/CDH 等大数据引擎,为企业构建数据仓库、数据湖以及湖仓一体(Lakehouse)现代数据架构提供数据平台产品解决方案。…

推荐一款功能强大的显示器!

最近在写项目开发文档,经常需要几个界面来回切换,真的深刻感受到了一台外接显示器对一名程序员来说有多重要了,画功能流程图的时候嫌弃自己的笔记本屏幕不够大,看代码的时候又在想要是有个旋转屏就好了,来回切换界面的…

【JavaScript复习二】选择结构if和Switch(1)

### []( )2、单分支条件分支语句if (条件表达式) { // 条件为真时,做的事情 } else { // 条件为假时,做的事情 } ### []( )2,、多分支的 if 语句if (条件表达式1) { // 条件1为真时,做的事情} else if (条件表达式2) { // 条件1不满足&…

kafka学习笔记07

Kafka高可用集群搭建节点需求规划 开放端口。 Kafka高可用集群之zookeeper集群搭建环境准备 删除之前的kafka和zookeeper。 重新进行环境部署: 我们解压我们的zookeeper: 编辑第一个zookeeper的配置文件: 我们重复类似的操作,创建三个zookeeper节点: 记…

SM4 国密——加密,解密

SM4 国密的使用 前言——引用管理包SM4解密——ECB模式SM4加密——ECB模式SM4解密——CBC模式SM4加密——CBC模式SM4工具类SM4主体类SM4实体类 前言——引用管理包 引用NuGet管理包BouncyCastle.Crypto SM4解密——ECB模式 public string CiphertextParsing(string json) {tr…

【数学建模】解析几何与方程模型

文章目录 解析几何与方程模型1.几何建模思想2.Numpy在线性代数中的使用3.国赛求解3.1题目3.2 问题1求解建立模型代码求解 3.3 问题2求解 4.问题答疑Q1:什么是行列式,其使用场景是什么行列式的定义行列式的性质行列式的使用场景 Q2:2023B题问题一用相似三角形求解覆盖…

sql server 非sa账号配置发布订阅

如果有些源端环境,sa账号被禁用,或者有其他问题,那可以按以下步骤操作。 使用高权限账户登录,另外需要拥有源端windows用户管理员的账号和密码 表发布订阅成功的前提:发布的表必须有主键。 创建一个专门用于发布订阅的…

国际导师上海面授大规模敏捷LeSS认证2024年8月22-24日开班 | 报名享特大福利

课堂互动练习 学员反馈 • “LeSS课我正经听过的有3次;两次Bas Vodde主讲,一次吕毅老师主讲。第一次应该是2015年,这门课中体现的对组织运作和产品开发底层逻辑的洞见令我折服。后来又陆续听了两次,每次都有更多体会。 我试着从一…

【递归、搜索与回溯】综合练习四

综合练习四 1.单词搜索2.黄金矿工3.不同路径 III 点赞👍👍收藏🌟🌟关注💖💖 你的支持是对我最大的鼓励,我们一起努力吧!😃😃 1.单词搜索 题目链接:79. 单词搜…

杨辉三角的快速求法

一、杨辉三角形 杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,是二项式系数在三角形中的一种几何排列,古称“开方作法本源图”。 杨辉三角的历史 北宋人贾宪约1050年首先使用“贾…

2024年,计算机相关专业依旧是热门选择吗?未来趋势大揭秘!

文章目录 引言一、行业竞争现状二、专业与个人的匹配度判断三、专业前景分析总结 引言 在科技日新月异的今天,计算机专业一直以其强大的实用性和广阔的就业前景吸引着无数学子的目光。然而,随着人工智能、大数据、云计算等领域的飞速发展,我…

「51媒体」活动会议,展览展会,直播曝光的一种方法

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 我们在做活动会议,或者参加展览展会,需要进行直播的时候,可以通过一键同步多个媒体平台的方法,来扩大曝光,比如一场直播我们可…

FFmpeg开发笔记(三十九)给Visual Studio的C++工程集成FFmpeg

《FFmpeg开发实战:从零基础到短视频上线》一书的“第11章 FFmpeg的桌面开发”介绍了如何在Windows环境对Qt结合FFmpeg实现桌面程序,那么Windows系统通过Visual Studio开发桌面程序也是很常见的,下面就介绍如何在Visual Studio的C工程中集成F…

弃用Docker Desktop:在WSL2中玩转Docker之Docker Engine 部署与WSL入门

Docker技术概论 在WSL2中玩转Docker之Docker Engine部署 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://bl…

【unity笔记】四、Enviro- Sky and Weather插件使用

一、 简介 Enviro内置 RP、URP、HDRP,开箱即用。 动态天空 随附的天空系统经过精心设计,以实现最佳性能和灵活性。使用多种颜色渐变,而不是调整人工数字。为您的项目创建独特且非常逼真的天空非常简单! 灯光 由 Enviro 控制的逼…

Python学习打卡:day10

day10 笔记来源于:黑马程序员python教程,8天python从入门到精通,学python看这套就够了 目录 day1073、文件的读取操作文件的操作步骤open()打开函数mode常用的三种基础访问模式读操作相关方法read()方法readlines()方法readline()方法for循…

计算机组成原理---Cache的基本工作原理习题

对应知识点: Cache的基本原理 1.某存储系统中,主存容量是Cache容量的4096倍,Cache 被分为 64 个块,当主存地址和Cache地址采用直接映射方式时,地址映射表的大小应为()(假设不考虑一致维护和替…

LeetCode 算法:删除链表的倒数第 N 个结点 c++

原题链接🔗:删除链表的倒数第 N 个结点 难度:中等⭐️⭐️ 题目 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出&#xff1a…

【无线传感网】LEACH路由算法

1、LEACH路由算法简介 LEACH协议,全称是“低功耗自适应集簇分层型协议” (Low Energy Adaptive Clustering Hierarchy),是一种无线传感器网络路由协议。基于LEACH协议的算法,称为LEACH算法。 2、LEACH路由算法的基本思想 LEACH路由协议与以往的路由协议的不同之处在于其改变…

ElasticSearch地理空间数据写入

目录 ElasticSearch地理空间数据写入思路介绍实现(geo_point)数据处理创建点的mappings使用Java将数据写入ES配置maven依赖项目配置ES数据写入查询数据实现(geo_shape)数据处理创建geo_shape的mappings使用Java将数据写入ES数据写入查询数据ElasticSearch地理空间数据写入 申明…