大模型应用:LangChain-Golang核心模块使用

在这里插入图片描述

1.简介

LangChain是一个开源的框架,它提供了构建基于大模型的AI应用所需的模块和工具。它可以帮助开发者轻松地与大型语言模型(LLM)集成,实现文本生成、问答、翻译、对话等任务。LangChain的出现大大降低了AI应用开发的门槛,使得任何人都可以基于LLM构建自己的创意应用。本文将介绍基于Golang使用LangChain相关模块。
项目地址:https://github.com/tmc/langchaingo

2.核心模块

llm调用

func demo(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL("https://api.openai-proxy.com/v1"),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}completion, err := llms.GenerateFromSinglePrompt(ctx,llm,"hello world!",llms.WithTemperature(0),)if err != nil {log.Fatal(err)}fmt.Println(completion)
}

prompt模板

  • 简单使用
func promptTemplate(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}prompt := prompts.PromptTemplate{Template:       "你是一个文本翻译员,请将```括起来的原始文本转化为{{.lang}}。原始文本```{{.text}}```",InputVariables: []string{"text"},PartialVariables: map[string]any{"lang": "英语",},TemplateFormat: prompts.TemplateFormatGoTemplate,}result, err := prompt.Format(map[string]any{"text": "我是中国人",})if err != nil {log.Fatal(err)}fmt.Println(result)result, err = llm.Call(ctx, result)if err != nil {log.Fatal(err)}fmt.Println(result)
}
  • 带输出格式化
func promptWithRoleJSON(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}messages := []llms.MessageContent{llms.TextParts(llms.ChatMessageTypeSystem, "你是一个英文翻译员,需要将<>括起来的英文翻译为中文,用JSON格式输出:原始文本、翻译文本"),llms.TextParts(llms.ChatMessageTypeHuman, "<hello world>"),}content, err := llm.GenerateContent(ctx, messages, llms.WithJSONMode())if err != nil {log.Fatal(err)}fmt.Println(content.Choices[0].Content)
}

上下文记忆

func conversationMemory(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}//memoryBuffer := memory.NewConversationBuffer()memoryBuffer := memory.NewConversationWindowBuffer(10)//memoryBuffer := memory.NewConversationTokenBuffer(llm, 1024)chatChain := chains.NewConversation(llm, memoryBuffer)messages := []string{"你好,我叫PBR","你知道我叫什么吗?","你可以解决什么问题?",}for _, message := range messages {completion, err := chains.Run(ctx, chatChain, message)for {if err == nil {break}time.Sleep(30 * time.Second)completion, err = chains.Run(ctx, chatChain, message)}chatMessages, _ := memoryBuffer.ChatHistory.Messages(ctx)fmt.Printf("上下文对话历史:%v\n", json.SafeDump(chatMessages))fmt.Printf("输入:%v\n输出:%v\n", message, completion)}
}

模型链

func llmChains(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 单个输入prompt := prompts.NewPromptTemplate(`将"""括起来中文翻译为英文输出输入中文:"""{{.text}}"""输出结果中只需要有英文翻译,不要有其他字符`,[]string{"text"})llmChain := chains.NewLLMChain(llm, prompt)out, err := chains.Run(ctx, llmChain, "langchain是一款不错的llm脚手架")if err != nil {log.Fatal(err)}fmt.Println(out)// 多个输入translatePrompt := prompts.NewPromptTemplate("Translate the following text from {{.inputLanguage}} to {{.outputLanguage}}. {{.text}}",[]string{"inputLanguage", "outputLanguage", "text"},)llmChain = chains.NewLLMChain(llm, translatePrompt)// Otherwise the call function must be used.outputValues, err := chains.Call(ctx, llmChain, map[string]any{"inputLanguage":  "English","outputLanguage": "Chinese","text":           "I love programming.",})if err != nil {log.Fatal(err)}out, ok := outputValues[llmChain.OutputKey].(string)if !ok {log.Fatal(err)}fmt.Println(out)
}

顺序链

unc sequenceChains(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 将输入翻译为特定语言chain1 := chains.NewLLMChain(llm,prompts.NewPromptTemplate("请将输入的原始文本:{{.originText}}翻译为{{.language}},直接输出翻译文本",[]string{"originText", "language"}))chain1.OutputKey = "transText"// 总结翻译后的文本概要chain2 := chains.NewLLMChain(llm, prompts.NewPromptTemplate("请将输入的原始文本:<{{.transText}}>总结50字以内概要文本。严格使用JSON序列化输出结果,不要带有```json序列化标识。其中originText为原始文本,summaryText为概要文本",[]string{"transText"}))chain2.OutputKey = "summary_json"chain, err := chains.NewSequentialChain([]chains.Chain{chain1, chain2}, []string{"originText", "language"}, []string{"summary_json"})if err != nil {log.Fatal(err)}resp, err := chain.Call(ctx, map[string]any{"originText": "langchain is a good llm frameworks","language":   "中文",})if err != nil {log.Fatal(err)}for key, value := range resp {fmt.Printf("key = %v | value = %v\n", key, value)}
}

向量生成

func embeddingCreate(ctx context.Context) {// embedding生成测试llm, err := openai.New(openai.WithEmbeddingModel("text-embedding-ada-002"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}vectors, err := llm.CreateEmbedding(ctx, []string{"chatgpt-3.5"})if err != nil {log.Fatal(err)}fmt.Println(vectors)
}

RAG

  • RAG:检索增强生成,分为向量创建、向量存储、向量召回应用
func embeddingRag(ctx context.Context) {// embedding生成测试llm, err := openai.New(openai.WithEmbeddingModel("text-embedding-ada-002"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 创建embedderopenAiEmbedder, err := embeddings.NewEmbedder(llm)if err != nil {log.Fatal(err)}// 基于redis存储向量redisStore, err := redisvector.New(ctx,redisvector.WithConnectionURL(conf.LLMHubConfig.Redis.Url),redisvector.WithIndexName("test_vector_idx", true),redisvector.WithEmbedder(openAiEmbedder),)if err != nil {log.Fatalln(err)}// 插入测试数据data := []schema.Document{{PageContent: "狸花猫", Metadata: nil},{PageContent: "金渐层猫", Metadata: nil},{PageContent: "松狮犬", Metadata: nil},}_, err = redisStore.AddDocuments(ctx, data)if err != nil {log.Fatalln(err)}docs, err := redisStore.SimilaritySearch(ctx, "猫", 3,vectorstores.WithScoreThreshold(0.5),)fmt.Println(docs)// 将vector检索接入chains中result, err := chains.Run(ctx,chains.NewRetrievalQAFromLLM(llm,vectorstores.ToRetriever(redisStore, 3, vectorstores.WithScoreThreshold(0.8)),),"有哪些猫?",)fmt.Println(result)
}

Agent

  • Agent = LLM + Memory + Tools
  • 已集成工具使用
func agent_math_and_search(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}wikiTool := wikipedia.New("test")agentTools := []tools.Tool{tools.Calculator{},wikiTool,}agent := agents.NewOneShotAgent(llm, agentTools)executor := agents.NewExecutor(agent,agentTools,agents.WithCallbacksHandler(callbacks.LogHandler{}),)// 计算result, err := chains.Run(ctx, executor, "计算1024除以2并加1024的结果")if err != nil {log.Fatal(err)}fmt.Println(result)// 搜索result, err = chains.Run(ctx, executor, "今天的日期以及中国在去年今天发生了什么大事")if err != nil {log.Fatal(err)}fmt.Println(result)
}
  • 自定义工具
type randomNumberTool struct{}func (r randomNumberTool) Name() string {return "随机数计算工具"
}func (r randomNumberTool) Description() string {return "用于获取随机数"
}func (r randomNumberTool) Call(ctx context.Context, input string) (string, error) {return "1024", nil
}func agent_diy(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}agentTools := []tools.Tool{randomNumberTool{},}agent := agents.NewOneShotAgent(llm, agentTools)executor := agents.NewExecutor(agent,agentTools,agents.WithCallbacksHandler(callbacks.LogHandler{}),)result, err := chains.Run(ctx, executor, "告诉我一个随机数")if err != nil {log.Fatal(err)}fmt.Println(result)
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/27908.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2_2、MFC对话框应用

对话框应用 模态与非模态对话框模态对话框弹出模态对话框创建模态对话框 非模态对话框 属性页对话框向导对话框一般属性页对话框 消息对话框函数原型函数返回值调用 文件对话框字体对话框获取字体对话框中所选字体选取字体样式并显示在编辑框中 颜色对话框获取取颜色对话框中所…

word空白页删除不了怎么办?

上方菜单栏点击“视图”&#xff0c;下方点击“大纲视图”。找到文档分页符的位置。将光标放在要删除的分节符前&#xff0c;按下键盘上的“Delet”键删除分页符。

L52--- 144. 二叉树的后序遍历(深搜)---Java版

1.题目描述 2.思路 (1)二叉树后序遍历&#xff1a;左右根 (2)根节点的压入: 根节点首先被压入stack中&#xff0c;然后被弹出并压入output中。 遍历过程: stack用于存储需要遍历的节点。 output用于反转遍历顺序。 入栈顺序: 左子节点先入栈&#xff0c;右子节点后入栈。这…

基于C#开发web网页管理系统模板流程-总集篇

第一篇 基于C#开发web网页管理系统模板流程-登录界面和主界面_c#的网页编程-CSDN博客 第二篇 基于C#开发web网页管理系统模板流程-主界面管理员录入和编辑功能完善_c#网页设计-CSDN博客 第三篇 基于C#开发web网页管理系统模板流程-主界面管理员入库和出库功能完善_c#web程序设计…

目标检测数据集 - PCB板表面缺陷检测数据集下载「包含VOC、COCO、YOLO三种格式」

数据集介绍&#xff1a;PCB 板表面缺陷检测数据集&#xff0c;真实采集高质量 PCB 板表面含缺陷图片数据&#xff0c;数据集含多款不同 PCB 板高清表面图片数据&#xff0c;包括俯拍正拍、旋转拍摄姿态。数据标注标签包括 missing_hole、mouse_bite、open_circuit、short、spur…

【Python推导式秘籍】:一行代码的艺术,高效数据处理之道

文章目录 &#x1f68b;Python推导式&#x1f680;一、列表推导式&#x1f308;1. 了解推导式❤️2. 实践&#x1f4a5;3. 总结 &#x1f680;二、字典推导式&#x1f308;1. 了解字典推导式❤️2. 实践&#x1f4a5;3. 总结 &#x1f680;三、集合推导式&#x1f308;1. 了解集…

AI实践与学习5-AI解题场景RAG应用预研demo

背景 AI解题场景现状&#xff0c;教研测评文档&#xff1a;xxx 解题正确率仍需进一步提高&#xff0c;提示词优化方案基本无力o目前配置的易错题CoT示例支持的长度有限&#xff0c;后续题量大的时候配置具有局限性。某些英语翻译题型BAD CASE反映大模型的输出格式不太符合要求…

java:spring【AnnotationMetadata】的简单使用例子

# 项目代码资源&#xff1a; 可能还在审核中&#xff0c;请等待。。。 https://download.csdn.net/download/chenhz2284/89435385 # 项目代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-start…

Linxu开机出现 Generating “/run/initramfs/rdsosreport.txt“解决方案

Linxu开机出现 Generating "/run/initramfs/rdsosreport.txt"解决方案 解决&#xff1a; 一、找这个-root结尾的文件也不一样。 大家可以用ls /dev/mapper查看到自己装的镜像对应的以-root结尾的文件是哪个。 二、所以我们运行的是&#xff1a;xfs_repair /dev/map…

Flutter 自定义日志模块设计

前言 村里的老人常说&#xff1a;“工程未动&#xff0c;日志先行。” 有效的利用日志&#xff0c;能够显著提高开发/debug效率&#xff0c;否则程序运行出现问题时可能需要花费大量的时间去定位错误位置和出错原因。 然而一个复杂的项目往往需要打印日志的地方比较多&#…

web错题(1)

action属性是form标签的必须属性&#xff0c;用于指定表单提交时表单数据将被发往哪里 dir能够指定文本显示方向的属性 可以产生下拉列表的标记时<select> multiple属性设为true&#xff0c;表示输入字段可以选择多个值 lable标签的for属性可以把lable绑定到另一个元…

vagrant putty错误的解决

使用Vagrant projects for Oracle products and other examples 新创建的虚机&#xff0c;例如vagrant-projects/OracleLinux/8。 用vagrant ssh可以登录&#xff1a; $ vagrant ssh > vagrant: Getting Proxy Configuration from Host...Welcome to Oracle Linux Server …

网络协议,OSI,简单通信,IP和mac地址

认识协议 1.讲故事 2004年&#xff0c;小明因为给他爹打电话&#xff08;座机&#xff09;费用太贵&#xff0c;所以约定一种信号&#xff0c;响一次是报平安&#xff0c;响两次是要钱&#xff0c;响三次才需要接通。 2.概念 协议&#xff1a;是一种约定&#xff0c;这种约…

【Android面试八股文】请描述new一个对象的流程

文章目录 请描述new一个对象的流程JVM创建对象的过程检查加载分配内存内存空间初始化设置对象初始化请描述new一个对象的流程 JVM创建对象的过程 当JVM遇到一条new指令时,它需要完成以下几个步骤: 类加载与检查内存分配 并发安全性内存空间初始化设置对象信息对象初始化下图…

10W大奖等你瓜分,OpenTiny CCF开源创新大赛报名火热启动!

OpenTiny CCF开源创新大赛正式启幕&#xff01; &#x1f31f;10万奖金&#xff0c;等你来战&#xff01; &#x1f31f; &#x1f465;无论你是独行侠还是团队英雄&#x1f465; 只要你对前端技术充满热情&#xff0c; 渴望在实战中磨砺技能&#xff0c; 那么&#xff0c…

抢占人工智能行业红利,前阿里巴巴产品专家带你15天入门AI产品经理

前言 当互联网行业巨头纷纷布局人工智能&#xff0c;国家将人工智能上升为国家战略&#xff0c;藤校核心课程涉足人工智能…人工智能领域蕴含着巨大潜力&#xff0c;早已成为业内共识。 面对极大的行业空缺&#xff0c;不少人都希望能抢占行业红利期&#xff0c;进入AI领域。…

文件系统小册(FusePosixK8s csi)【3 K8s csi】

文件系统小册&#xff08;Fuse&Posix&K8s csi&#xff09;【3 K8s csi】 往期文章&#xff1a; 文件系统小册&#xff08;Fuse&Posix&K8s csi&#xff09;【1 Fuse】文件系统小册&#xff08;Fuse&Posix&K8s csi&#xff09;【2 Posix标准】 0 核心知识…

liunx常见指令

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 二、安装环境 1.租借服务器 2.下载安装 XShell 3.使用xshll登录服务器 三、Linux基础命令 一、文件和命令 ​编辑1、cd 命令 2、pwd 命令 3、ls 命令 4、cp 命令 …

邮件钓鱼--前置-攻击防范 7 看

目录 1、什么是 SPF&#xff1a; 2、如何判断 SPF&#xff1a; 3.邮件钓鱼防范&#xff1a;7 看 1、什么是 SPF&#xff1a; SPF 记录&#xff1a;原理、语法及配置方法简介 (zhetao.com) SPF记录详解_spf写法-CSDN博客 发件人策略框架&#xff08;Sender Policy Frame…

【多线程】Thread类及其基本用法

&#x1f970;&#x1f970;&#x1f970;来都来了&#xff0c;不妨点个关注叭&#xff01; &#x1f449;博客主页&#xff1a;欢迎各位大佬!&#x1f448; 文章目录 1. Java中多线程编程1.1 操作系统线程与Java线程1.2 简单使用多线程1.2.1 初步创建新线程代码1.2.2 理解每个…