大模型应用:LangChain-Golang核心模块使用

在这里插入图片描述

1.简介

LangChain是一个开源的框架,它提供了构建基于大模型的AI应用所需的模块和工具。它可以帮助开发者轻松地与大型语言模型(LLM)集成,实现文本生成、问答、翻译、对话等任务。LangChain的出现大大降低了AI应用开发的门槛,使得任何人都可以基于LLM构建自己的创意应用。本文将介绍基于Golang使用LangChain相关模块。
项目地址:https://github.com/tmc/langchaingo

2.核心模块

llm调用

func demo(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL("https://api.openai-proxy.com/v1"),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}completion, err := llms.GenerateFromSinglePrompt(ctx,llm,"hello world!",llms.WithTemperature(0),)if err != nil {log.Fatal(err)}fmt.Println(completion)
}

prompt模板

  • 简单使用
func promptTemplate(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}prompt := prompts.PromptTemplate{Template:       "你是一个文本翻译员,请将```括起来的原始文本转化为{{.lang}}。原始文本```{{.text}}```",InputVariables: []string{"text"},PartialVariables: map[string]any{"lang": "英语",},TemplateFormat: prompts.TemplateFormatGoTemplate,}result, err := prompt.Format(map[string]any{"text": "我是中国人",})if err != nil {log.Fatal(err)}fmt.Println(result)result, err = llm.Call(ctx, result)if err != nil {log.Fatal(err)}fmt.Println(result)
}
  • 带输出格式化
func promptWithRoleJSON(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}messages := []llms.MessageContent{llms.TextParts(llms.ChatMessageTypeSystem, "你是一个英文翻译员,需要将<>括起来的英文翻译为中文,用JSON格式输出:原始文本、翻译文本"),llms.TextParts(llms.ChatMessageTypeHuman, "<hello world>"),}content, err := llm.GenerateContent(ctx, messages, llms.WithJSONMode())if err != nil {log.Fatal(err)}fmt.Println(content.Choices[0].Content)
}

上下文记忆

func conversationMemory(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}//memoryBuffer := memory.NewConversationBuffer()memoryBuffer := memory.NewConversationWindowBuffer(10)//memoryBuffer := memory.NewConversationTokenBuffer(llm, 1024)chatChain := chains.NewConversation(llm, memoryBuffer)messages := []string{"你好,我叫PBR","你知道我叫什么吗?","你可以解决什么问题?",}for _, message := range messages {completion, err := chains.Run(ctx, chatChain, message)for {if err == nil {break}time.Sleep(30 * time.Second)completion, err = chains.Run(ctx, chatChain, message)}chatMessages, _ := memoryBuffer.ChatHistory.Messages(ctx)fmt.Printf("上下文对话历史:%v\n", json.SafeDump(chatMessages))fmt.Printf("输入:%v\n输出:%v\n", message, completion)}
}

模型链

func llmChains(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 单个输入prompt := prompts.NewPromptTemplate(`将"""括起来中文翻译为英文输出输入中文:"""{{.text}}"""输出结果中只需要有英文翻译,不要有其他字符`,[]string{"text"})llmChain := chains.NewLLMChain(llm, prompt)out, err := chains.Run(ctx, llmChain, "langchain是一款不错的llm脚手架")if err != nil {log.Fatal(err)}fmt.Println(out)// 多个输入translatePrompt := prompts.NewPromptTemplate("Translate the following text from {{.inputLanguage}} to {{.outputLanguage}}. {{.text}}",[]string{"inputLanguage", "outputLanguage", "text"},)llmChain = chains.NewLLMChain(llm, translatePrompt)// Otherwise the call function must be used.outputValues, err := chains.Call(ctx, llmChain, map[string]any{"inputLanguage":  "English","outputLanguage": "Chinese","text":           "I love programming.",})if err != nil {log.Fatal(err)}out, ok := outputValues[llmChain.OutputKey].(string)if !ok {log.Fatal(err)}fmt.Println(out)
}

顺序链

unc sequenceChains(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-4o"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 将输入翻译为特定语言chain1 := chains.NewLLMChain(llm,prompts.NewPromptTemplate("请将输入的原始文本:{{.originText}}翻译为{{.language}},直接输出翻译文本",[]string{"originText", "language"}))chain1.OutputKey = "transText"// 总结翻译后的文本概要chain2 := chains.NewLLMChain(llm, prompts.NewPromptTemplate("请将输入的原始文本:<{{.transText}}>总结50字以内概要文本。严格使用JSON序列化输出结果,不要带有```json序列化标识。其中originText为原始文本,summaryText为概要文本",[]string{"transText"}))chain2.OutputKey = "summary_json"chain, err := chains.NewSequentialChain([]chains.Chain{chain1, chain2}, []string{"originText", "language"}, []string{"summary_json"})if err != nil {log.Fatal(err)}resp, err := chain.Call(ctx, map[string]any{"originText": "langchain is a good llm frameworks","language":   "中文",})if err != nil {log.Fatal(err)}for key, value := range resp {fmt.Printf("key = %v | value = %v\n", key, value)}
}

向量生成

func embeddingCreate(ctx context.Context) {// embedding生成测试llm, err := openai.New(openai.WithEmbeddingModel("text-embedding-ada-002"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}vectors, err := llm.CreateEmbedding(ctx, []string{"chatgpt-3.5"})if err != nil {log.Fatal(err)}fmt.Println(vectors)
}

RAG

  • RAG:检索增强生成,分为向量创建、向量存储、向量召回应用
func embeddingRag(ctx context.Context) {// embedding生成测试llm, err := openai.New(openai.WithEmbeddingModel("text-embedding-ada-002"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}// 创建embedderopenAiEmbedder, err := embeddings.NewEmbedder(llm)if err != nil {log.Fatal(err)}// 基于redis存储向量redisStore, err := redisvector.New(ctx,redisvector.WithConnectionURL(conf.LLMHubConfig.Redis.Url),redisvector.WithIndexName("test_vector_idx", true),redisvector.WithEmbedder(openAiEmbedder),)if err != nil {log.Fatalln(err)}// 插入测试数据data := []schema.Document{{PageContent: "狸花猫", Metadata: nil},{PageContent: "金渐层猫", Metadata: nil},{PageContent: "松狮犬", Metadata: nil},}_, err = redisStore.AddDocuments(ctx, data)if err != nil {log.Fatalln(err)}docs, err := redisStore.SimilaritySearch(ctx, "猫", 3,vectorstores.WithScoreThreshold(0.5),)fmt.Println(docs)// 将vector检索接入chains中result, err := chains.Run(ctx,chains.NewRetrievalQAFromLLM(llm,vectorstores.ToRetriever(redisStore, 3, vectorstores.WithScoreThreshold(0.8)),),"有哪些猫?",)fmt.Println(result)
}

Agent

  • Agent = LLM + Memory + Tools
  • 已集成工具使用
func agent_math_and_search(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}wikiTool := wikipedia.New("test")agentTools := []tools.Tool{tools.Calculator{},wikiTool,}agent := agents.NewOneShotAgent(llm, agentTools)executor := agents.NewExecutor(agent,agentTools,agents.WithCallbacksHandler(callbacks.LogHandler{}),)// 计算result, err := chains.Run(ctx, executor, "计算1024除以2并加1024的结果")if err != nil {log.Fatal(err)}fmt.Println(result)// 搜索result, err = chains.Run(ctx, executor, "今天的日期以及中国在去年今天发生了什么大事")if err != nil {log.Fatal(err)}fmt.Println(result)
}
  • 自定义工具
type randomNumberTool struct{}func (r randomNumberTool) Name() string {return "随机数计算工具"
}func (r randomNumberTool) Description() string {return "用于获取随机数"
}func (r randomNumberTool) Call(ctx context.Context, input string) (string, error) {return "1024", nil
}func agent_diy(ctx context.Context) {llm, err := openai.New(openai.WithModel("gpt-3.5-turbo"),openai.WithBaseURL(conf.LLMHubConfig.Openai.Host),openai.WithToken(conf.LLMHubConfig.Openai.Key),)if err != nil {log.Fatal(err)}agentTools := []tools.Tool{randomNumberTool{},}agent := agents.NewOneShotAgent(llm, agentTools)executor := agents.NewExecutor(agent,agentTools,agents.WithCallbacksHandler(callbacks.LogHandler{}),)result, err := chains.Run(ctx, executor, "告诉我一个随机数")if err != nil {log.Fatal(err)}fmt.Println(result)
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/27908.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

grep命令知多少

引言 1. grep命令的重要性 在Linux系统中&#xff0c;grep是一个不可或缺的文本处理工具&#xff0c;它允许用户快速搜索文件中的文本模式。这个命令的名称来源于Global Regular Expression Print&#xff0c;即全局正则表达式打印&#xff0c;它源自UNIX早期的ed文本编辑器。…

【MongoDB】如何在Debian 10 Linux上安装MongoDB

如何在Debian 10 Linux上安装MongoDB 来源:https://linuxize.com/post/how-to-install-mongodb-on-debian-10/ 文章目录 安装MongoDB配置MongoDB创建MongoDB管理员用户结论MongoDB是一个免费且开源的文档型数据库。它属于NoSQL数据库家族,与传统的基于表的SQL数据库(如MySQL…

青少年编程与数学 01-001开始使用计算机 02课题、计算机操作系统3_3

青少年编程与数学 01-001开始使用计算机 02课题、计算机操作系统3_3 四、Linux操作系统安装&#xff08;一&#xff09; 准备工作&#xff08;二&#xff09;设置BIOS/UEFI&#xff08;三&#xff09; 安装Linux&#xff08;四&#xff09;磁盘分区&#xff08;五&#xff09;安…

代码随想录算法训练营第三十九天 | 62.不同路径、63. 不同路径 II、343. 整数拆分、96.不同的二叉搜索树

62.不同路径 题目链接&#xff1a;https://leetcode.cn/problems/unique-paths/ 文档讲解&#xff1a;https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE… 视频讲解&#xff1a;https://www.bilibili.com/video/BV1ve4y1x7Eu/ 思路 确定dp数组以及下标的含…

FFmpeg YUV编码为H264

使用FFmpeg库把YUV420P文件编码为H264文件&#xff0c;FFmpeg版本为4.4.2-0。 需要yuv测试文件的&#xff0c;可以从我上传的MP4文件中用ffmpeg提取&#xff0c;命令如下&#xff1a; ffmpeg -i <输入MP4文件名> -pix_fmt yuv420p <输出YUV文件名>例如&#xff1…

2_2、MFC对话框应用

对话框应用 模态与非模态对话框模态对话框弹出模态对话框创建模态对话框 非模态对话框 属性页对话框向导对话框一般属性页对话框 消息对话框函数原型函数返回值调用 文件对话框字体对话框获取字体对话框中所选字体选取字体样式并显示在编辑框中 颜色对话框获取取颜色对话框中所…

word空白页删除不了怎么办?

上方菜单栏点击“视图”&#xff0c;下方点击“大纲视图”。找到文档分页符的位置。将光标放在要删除的分节符前&#xff0c;按下键盘上的“Delet”键删除分页符。

L52--- 144. 二叉树的后序遍历(深搜)---Java版

1.题目描述 2.思路 (1)二叉树后序遍历&#xff1a;左右根 (2)根节点的压入: 根节点首先被压入stack中&#xff0c;然后被弹出并压入output中。 遍历过程: stack用于存储需要遍历的节点。 output用于反转遍历顺序。 入栈顺序: 左子节点先入栈&#xff0c;右子节点后入栈。这…

基于C#开发web网页管理系统模板流程-总集篇

第一篇 基于C#开发web网页管理系统模板流程-登录界面和主界面_c#的网页编程-CSDN博客 第二篇 基于C#开发web网页管理系统模板流程-主界面管理员录入和编辑功能完善_c#网页设计-CSDN博客 第三篇 基于C#开发web网页管理系统模板流程-主界面管理员入库和出库功能完善_c#web程序设计…

北京汽车美容元宇宙,未来已来

随着科技的不断进步和市场需求的日益增长&#xff0c;元宇宙的概念正在逐渐渗透到我们生活的方方面面。北京&#xff0c;这座科技创新的前沿城市&#xff0c;正见证着汽车美容元宇宙的悄然兴起&#xff0c;为传统汽车美容行业注入了新的活力和想象空间。 在政策的积极推动和市…

从面试角度了解前端基础知识体系

目录 前端专业知识相关面试考察点 HTML 与 CSS Javascript 网络相关 浏览器相关 安全相关 算法与数据结构 计算机通用知识 前端项目经验相关面试考察点 前端框架与工具库 Node.js 与服务端 性能优化 前端工程化 开发效率提升 监控、灰度与发布 多人协作 结束语…

目标检测数据集 - PCB板表面缺陷检测数据集下载「包含VOC、COCO、YOLO三种格式」

数据集介绍&#xff1a;PCB 板表面缺陷检测数据集&#xff0c;真实采集高质量 PCB 板表面含缺陷图片数据&#xff0c;数据集含多款不同 PCB 板高清表面图片数据&#xff0c;包括俯拍正拍、旋转拍摄姿态。数据标注标签包括 missing_hole、mouse_bite、open_circuit、short、spur…

【Python推导式秘籍】:一行代码的艺术,高效数据处理之道

文章目录 &#x1f68b;Python推导式&#x1f680;一、列表推导式&#x1f308;1. 了解推导式❤️2. 实践&#x1f4a5;3. 总结 &#x1f680;二、字典推导式&#x1f308;1. 了解字典推导式❤️2. 实践&#x1f4a5;3. 总结 &#x1f680;三、集合推导式&#x1f308;1. 了解集…

AI实践与学习5-AI解题场景RAG应用预研demo

背景 AI解题场景现状&#xff0c;教研测评文档&#xff1a;xxx 解题正确率仍需进一步提高&#xff0c;提示词优化方案基本无力o目前配置的易错题CoT示例支持的长度有限&#xff0c;后续题量大的时候配置具有局限性。某些英语翻译题型BAD CASE反映大模型的输出格式不太符合要求…

java:spring【AnnotationMetadata】的简单使用例子

# 项目代码资源&#xff1a; 可能还在审核中&#xff0c;请等待。。。 https://download.csdn.net/download/chenhz2284/89435385 # 项目代码 【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-start…

Linxu开机出现 Generating “/run/initramfs/rdsosreport.txt“解决方案

Linxu开机出现 Generating "/run/initramfs/rdsosreport.txt"解决方案 解决&#xff1a; 一、找这个-root结尾的文件也不一样。 大家可以用ls /dev/mapper查看到自己装的镜像对应的以-root结尾的文件是哪个。 二、所以我们运行的是&#xff1a;xfs_repair /dev/map…

Flutter 自定义日志模块设计

前言 村里的老人常说&#xff1a;“工程未动&#xff0c;日志先行。” 有效的利用日志&#xff0c;能够显著提高开发/debug效率&#xff0c;否则程序运行出现问题时可能需要花费大量的时间去定位错误位置和出错原因。 然而一个复杂的项目往往需要打印日志的地方比较多&#…

大数据计算入门指南

大数据计算是指处理和分析大量数据的技术和方法。以下是一个入门指南&#xff0c;帮助你了解大数据计算的基本概念、工具和技术。 1. 大数据的特点 大数据通常具有以下四个主要特点&#xff1a; Volume&#xff08;数据量&#xff09;&#xff1a;数据的规模非常大。Velocit…

Spring Data JPA 通过方法名查询,通过名字查找用户区分用户名大小写吗

Spring Data JPA 通过方法名来定义查询时&#xff0c;是否区分大小写主要取决于底层数据库的校对集&#xff08;collation&#xff09;和JPA查询的默认行为。 首先&#xff0c;当你使用Spring Data JPA 的方法名查询时&#xff0c;如 findByName(String name)&#xff0c;Spri…

Linux动态Web服务器(Tomcat)

文章目录 一、动态网页介绍二、动态网页的工作原理三、动态网页常见技术3.1、CGI技术3.2、PHP技术3.3、JSP技术3.4、ASP技术 四、Tomcat4.1、什么是Tomcat4.2、Tomcat安装4.3、检查Tomcat进程4.4、编写Tomcat开机自动运行脚本4.4、解决激活状态 默认情况下&#xff0c;Apache只…