找工作小项目:day15-macOS支持、完善逻辑

macOS支持、完善逻辑

目前的代码可以在Linux上完美运行编译,在Windows上也可以通过WSL编译运行源代码,但是在MacBook上却无法运行编译,这主要是由于macOS上没有epoll,取而代之的很相似的kqueue。由于操作系统不同,我们需要的是在面向操作系统即从用户态向内核态转变时进行修改。目前我们面向这一过程的仅有Epoll,所以在面向不同操作系统的过程中仅需要关心这部分。

为了完善逻辑处理机制,即将不同事件类型进行不同的注册,事件注册在Channel中完成,因为之前是在Channel对不同事件的回调函数进行设置的。

1、错误检测机制

2、Macros(宏定义,去除类移动和复制)

3、Socket(创建地址和socket)

4、Epoll->Poller(事件注册分发从以及红黑树上删除)

声明部分就可以很直观地看出来,两者同属一系,仅仅是多了一部分适用于macOS的定义。

//Epoll
#include "Macros.h"
#include <vector>
#ifdef OS_LINUX
#include <sys/epoll.h>
#endif
class Channel;
class Epoll {public:Epoll();~Epoll();DISALLOW_COPY_AND_MOVE(Epoll);void UpdateChannel(Channel *ch);void DeleteChannel(Channel *ch);std::vector<Channel *> Poll(int timeout = -1);private:int epfd_{1};struct epoll_event *events_{nullptr};
};
//Poller
#include "Macros.h"
#ifdef OS_LINUX
#include <sys/epoll.h>
#endif
#ifdef OS_MACOS
#include <sys/event.h>
#endif
class Channel;
class Poller {public:Poller();~Poller();DISALLOW_COPY_AND_MOVE(Poller);void UpdateChannel(Channel *ch);void DeleteChannel(Channel *ch);std::vector<Channel *> Poll(int timeout = -1);private:int fd_{1};
#ifdef OS_LINUXstruct epoll_event *events_{nullptr};
#endif
#ifdef OS_MACOSstruct kevent *events_{nullptr};
#endif
};

为了完善逻辑,能够为不同事件类型注册不同的事件处理方式,这里采用标志位的方案进行设置,由于多了一种系统所以代码量会多出一倍,这是因为需要对在macOS系统下也进行定义。
在poll中对就绪事件进行分发,利用Channel能够在使用fd的同时获得事件的处理方式。

std::vector<Channel *> Poller::Poll(int timeout) {std::vector<Channel *> active_channels;int nfds = epoll_wait(fd_, events_, MAX_EVENTS, timeout);ErrorIf(nfds == -1, "epoll wait error");for (int i = 0; i < nfds; ++i) {Channel *ch = (Channel *)events_[i].data.ptr;int events = events_[i].events;if (events & EPOLLIN) {ch->SetReadyEvents(Channel::READ_EVENT);}if (events & EPOLLOUT) {ch->SetReadyEvents(Channel::WRITE_EVENT);}if (events & EPOLLET) {ch->SetReadyEvents(Channel::ET);}active_channels.push_back(ch);}return active_channels;
}

之后是对Channel中的监听事件类型标志位进行设置,如果事件标志位判断为真则将该事件设置成对应标志,注意是对红黑树树上的通道进行设置,不在树上都需要放到树上。
注意就绪事件和监听事件之间的关系,
注册监听:程序首先通过 listen_events_ 向内核注册自己感兴趣的事件。
内核监控:内核不断监控这些事件,并在事件发生时通知程序。
事件就绪:当内核检测到某些事件发生时,会将这些事件标记为就绪,并通过 I/O 多路复用机制返回给应用程序。
处理事件:程序读取 ready_events_,了解具体哪些事件已发生,然后进行相应的处理。

void Poller::UpdateChannel(Channel *ch) {int sockfd = ch->GetSocket()->GetFd();struct epoll_event ev {};ev.data.ptr = ch;if (ch->GetListenEvents() & Channel::READ_EVENT) {ev.events |= EPOLLIN | EPOLLPRI;}if (ch->GetListenEvents() & Channel::WRITE_EVENT) {ev.events |= EPOLLOUT;}if (ch->GetListenEvents() & Channel::ET) {ev.events |= EPOLLET;}if (!ch->GetExist()) {ErrorIf(epoll_ctl(fd_, EPOLL_CTL_ADD, sockfd, &ev) == -1, "epoll add error");ch->SetExist();} else {ErrorIf(epoll_ctl(fd_, EPOLL_CTL_MOD, sockfd, &ev) == -1, "epoll modify error");}
}

在macOS系统上的差别不大,主要是函数的使用不同,需要注意一下。

#ifdef OS_MACOSPoller::Poller() {fd_ = kqueue();ErrorIf(fd_ == -1, "kqueue create error");events_ = new struct kevent[MAX_EVENTS];memset(events_, 0, sizeof(*events_) * MAX_EVENTS);
}Poller::~Poller() {if (fd_ != -1) {close(fd_);}
}std::vector<Channel *> Poller::Poll(int timeout) {std::vector<Channel *> active_channels;struct timespec ts;memset(&ts, 0, sizeof(ts));if (timeout != -1) {ts.tv_sec = timeout / 1000;ts.tv_nsec = (timeout % 1000) * 1000 * 1000;}int nfds = 0;if (timeout == -1) {nfds = kevent(fd_, NULL, 0, events_, MAX_EVENTS, NULL);} else {nfds = kevent(fd_, NULL, 0, events_, MAX_EVENTS, &ts);}for (int i = 0; i < nfds; ++i) {Channel *ch = (Channel *)events_[i].udata;int events = events_[i].filter;if (events == EVFILT_READ) {ch->SetReadyEvents(ch->READ_EVENT | ch->ET);}if (events == EVFILT_WRITE) {ch->SetReadyEvents(ch->WRITE_EVENT | ch->ET);}active_channels.push_back(ch);}return active_channels;
}void Poller::UpdateChannel(Channel *ch) {struct kevent ev[2];memset(ev, 0, sizeof(*ev) * 2);int n = 0;int fd = ch->GetSocket()->GetFd();int op = EV_ADD;if (ch->GetListenEvents() & ch->ET) {op |= EV_CLEAR;}if (ch->GetListenEvents() & ch->READ_EVENT) {EV_SET(&ev[n++], fd, EVFILT_READ, op, 0, 0, ch);}if (ch->GetListenEvents() & ch->WRITE_EVENT) {EV_SET(&ev[n++], fd, EVFILT_WRITE, op, 0, 0, ch);}int r = kevent(fd_, ev, n, NULL, 0, NULL);ErrorIf(r == -1, "kqueue add event error");
}void Poller::DeleteChannel(Channel *ch) {struct kevent ev[2];int n = 0;int fd = ch->GetSocket()->GetFd();if (ch->GetListenEvents() & ch->READ_EVENT) {EV_SET(&ev[n++], fd, EVFILT_READ, EV_DELETE, 0, 0, ch);}if (ch->GetListenEvents() & ch->WRITE_EVENT) {EV_SET(&ev[n++], fd, EVFILT_WRITE, EV_DELETE, 0, 0, ch);}int r = kevent(fd_, ev, n, NULL, 0, NULL);ErrorIf(r == -1, "kqueue delete event error");
}
#endif

5、Channel(根据fd设置对应回调函数并调用,包括了事件标志位)

今天Channel将正式开始处理不同类型的事件,通过上面Poller的事件类型的设置将通过判断进行不同的工作,调用不同的函数。
声明部分多出了EnableWrite、SetWriteCallback方法,正式将写回调函数用上了。

class Socket;
class EventLoop;
class Channel {public:Channel(EventLoop *loop, Socket *socket);~Channel();DISALLOW_COPY_AND_MOVE(Channel);void HandleEvent();void EnableRead();void EnableWrite();Socket *GetSocket();int GetListenEvents();int GetReadyEvents();bool GetExist();void SetExist(bool in = true);void UseET();void SetReadyEvents(int ev);void SetReadCallback(std::function<void()> const &callback);void SetWriteCallback(std::function<void()> const &callback);static const int READ_EVENT;   // NOLINTstatic const int WRITE_EVENT;  // NOLINTstatic const int ET;           // NOLINTprivate:EventLoop *loop_;Socket *socket_;int listen_events_{0};int ready_events_{0};bool exist_{false};std::function<void()> read_callback_;std::function<void()> write_callback_;
};

在实现中,从析构函数就发生了变化,现在由EventLoop进行事件的回收工作,而不是像之前一样将fd置为-1;

const int Channel::READ_EVENT = 1;
const int Channel::WRITE_EVENT = 2;
const int Channel::ET = 4;
Channel::Channel(EventLoop *loop, Socket *socket) : loop_(loop), socket_(socket) {}Channel::~Channel() { loop_->DeleteChannel(this); }

在调用回调函数的方法上没发生什么变化,只不过有了标志位不再需要之前更靠近底层的判断方式。

void Channel::HandleEvent() {if (ready_events_ & READ_EVENT) {read_callback_();}if (ready_events_ & WRITE_EVENT) {write_callback_();}
}

根据事件的标志位将树上的通道中的处理方式进行更新。

void Channel::EnableRead() {listen_events_ |= READ_EVENT;loop_->UpdateChannel(this);
}void Channel::EnableWrite() {listen_events_ |= WRITE_EVENT;loop_->UpdateChannel(this);
}void Channel::UseET() {listen_events_ |= ET;loop_->UpdateChannel(this);
}

获取设置一些基础信息,包括将就绪事件的标志位设置为对应处理方式。

Socket *Channel::GetSocket() { return socket_; }int Channel::GetListenEvents() { return listen_events_; }
int Channel::GetReadyEvents() { return ready_events_; }bool Channel::GetExist() { return exist_; }void Channel::SetExist(bool in) { exist_ = in; }void Channel::SetReadyEvents(int ev) {if (ev & READ_EVENT) {ready_events_ |= READ_EVENT;}if (ev & WRITE_EVENT) {ready_events_ |= WRITE_EVENT;}if (ev & ET) {ready_events_ |= ET;}
}void Channel::SetReadCallback(std::function<void()> const &callback) { read_callback_ = callback; }
void Channel::SetWriteCallback(std::function<void()> const &callback) { write_callback_ = callback; }

6、EventLoop(对树上的通道进行轮询)

在事件处理的类中多了对通道回收的操作并多了一个Quit方法。

#include "Macros.h"
#include <functional>class Poller;
class Channel;
class EventLoop {public:EventLoop();~EventLoop();DISALLOW_COPY_AND_MOVE(EventLoop);void Loop();void UpdateChannel(Channel *ch);void DeleteChannel(Channel *ch);void Quit();private:Poller *poller_{nullptr};bool quit_{false};
};

quit_标志位作用不清楚,而DeleteChannel是调用poller中的deleteChannel方法完成的,这是因为由于不同系统中poller的对于并发Epoll库方法不同。

7、Acceptor(创建连接)

8、Connection(连接上发生的事件)

声明中State枚举类型中将Handshaking转变为了Connecting(从握手变成连接中…),多了Send、SetOnMessageCallback、Business、OnMessage以及on_message_callback_回调函数。

class EventLoop;
class Socket;
class Channel;
class Buffer;
class Connection {public:enum State {Invalid = 1,Connecting,Connected,Closed,Failed,};Connection(EventLoop *loop, Socket *sock);~Connection();DISALLOW_COPY_AND_MOVE(Connection);void Read();void Write();void Send(std::string msg);void SetDeleteConnectionCallback(std::function<void(Socket *)> const &callback);void SetOnConnectCallback(std::function<void(Connection *)> const &callback);void SetOnMessageCallback(std::function<void(Connection *)> const &callback);void Business();State GetState();void Close();void SetSendBuffer(const char *str);Buffer *GetReadBuffer();const char *ReadBuffer();Buffer *GetSendBuffer();const char *SendBuffer();void GetlineSendBuffer();Socket *GetSocket();void OnConnect(std::function<void()> fn);void OnMessage(std::function<void()> fn);private:EventLoop *loop_;Socket *sock_;Channel *channel_{nullptr};State state_{State::Invalid};Buffer *read_buffer_{nullptr};Buffer *send_buffer_{nullptr};std::function<void(Socket *)> delete_connectioin_callback_;std::function<void(Connection *)> on_connect_callback_;std::function<void(Connection *)> on_message_callback_;void ReadNonBlocking();void WriteNonBlocking();void ReadBlocking();void WriteBlocking();
};

从实现上看看发生了那些改变,注意在ReadNonBlocking中开始在连接断开的情况下内部调用Close而在昨天的项目中是在测试程序中进行的调用。
在这多出来的实现中,为外部设置了写数据的接口,封装更为简单的对外接口。SetOnMessageCallback设置on_message_callback_ 并进行回显调用

void Connection::Send(std::string msg){SetSendBuffer(msg.c_str());Write();
}void Connection::Business(){Read();on_message_callback_(this);
}void Connection::SetOnMessageCallback(std::function<void(Connection *)> const &callback) {on_message_callback_ = callback;std::function<void()> bus = std::bind(&Connection::Business, this);channel_->SetReadCallback(bus);
}

9、Buffer(缓冲区,用以存放双工过程中发送的数据)

10、ThreadPool(线程池,用以管理复用线程)

11、服务器类

从声明来看是将回显、新建连接进行了封装

class EventLoop;
class Socket;
class Acceptor;
class Connection;
class ThreadPool;
class Server {private:EventLoop *main_reactor_;Acceptor *acceptor_;std::map<int, Connection *> connections_;std::vector<EventLoop *> sub_reactors_;ThreadPool *thread_pool_;std::function<void(Connection *)> on_connect_callback_;std::function<void(Connection *)> on_message_callback_;std::function<void(Connection *)> new_connect_callback_;public:explicit Server(EventLoop *loop);~Server();DISALLOW_COPY_AND_MOVE(Server);void NewConnection(Socket *sock);void DeleteConnection(Socket *sock);void OnConnect(std::function<void(Connection *)> fn);void OnMessage(std::function<void(Connection *)> fn);void NewConnect(std::function<void(Connection *)> fn);
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/27677.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LED显示屏色差处理方法

LED显示屏以其高亮度、低功耗和长寿命等优点&#xff0c;在广告、信息发布和舞台背景等领域得到广泛应用。然而&#xff0c;由于生产批次的不同&#xff0c;LED显示屏在亮度和色度上可能存在差异&#xff0c;影响显示效果。本文将探讨如何通过逐点校正技术来解决这一问题。 逐点…

字节智能体平台:扣子原理和实践案例

完整内容&#xff1a; 字节智能体平台&#xff1a;扣子原理和实践案例

js的数据类型以及数据类型的判断

js的数据类型 在ECMAScript中有5中简单数据类型(基本数据类型) 分别是 Undefined, Null,Boolean,Number,String。在es6中引入了一个新基本数据类型是symbol。 还有复杂数据类型(引用类型) Object,本质上是由一组无序键值对组成的&#xff0c; Object, Array, function。 数据…

JVM 生产环境优化

如果一台机器上,有多个独立java程序,比如有5个独立java大型应用,只有总共32个CPU的情况下(现在普通的服务器几百个CPU了) -XX:ParallelGCThreads4 -XX:ConcGCThreads2 上面总线程数不易比如(42)*5<32,超过这个数字,容易引起资源竞赛,反而很大程度引起jvm 垃圾回收的时候停…

Navicat和SQLynx产品功能比较二(SQL查询)

数据库管理工具最常用的功能就是SQL的查询&#xff0c;没有之一。本文针对Navicat和SQLynx做了SQL查询相关的性能测试&#xff0c;从测试结果来看&#xff0c;Navicat主要适合开发类的小型数据量需求&#xff0c;SQLynx可以适应大型数据量或小型数据量的需求&#xff0c;用户可…

拓扑排序、关键路径(AOV、AOE网)

拓扑排序&#xff08;AOV网&#xff09; 相关知识 在现代化管理中&#xff0c;人们常用有向图来描述和分析一项工程的计划和实施过程&#xff0c;一个工程常被分为多个小的子工程&#xff0c;这些子工程被称为活动&#xff08;Activity)。 在有向图中若以顶点表示活动&#xff…

Sentence Transformers x SwanLab:可视化Embedding训练

Sentence Transformers(又名SBERT)是访问、使用和训练文本和图像嵌入&#xff08;Embedding&#xff09;模型的Python库。 你可以使用Sentence Transformers快速进行模型训练&#xff0c;同时使用SwanLab进行实验跟踪与可视化。 1. 引入SwanLabCallback from swanlab.integra…

lwip中server和client的socket、地址和端口号

1、server的socket通过lwip_socket建立&#xff1a; server_sd lwip_socket(AF_INET, SOCK_STREAM, 0);2、client的socket在监听到连接后建立&#xff1a; client_sd lwip_accept(server_sd, (struct sockaddr *)&client_addr_port, (socklen_t *)&size);3、server…

【STM32】基于RTOS的CAN异步接收转发数据

文章目录 前言实现 前言 现象&#xff1a;全局变量在 CAN 中断中存储数据&#xff0c;并设置同步标志&#xff0c;在主程序中检测标志后&#xff0c;打包并转发 CAN 数据&#xff0c;会出现 CAN 数据错乱 现象分析&#xff1a;CAN 数据打包处理过程中&#xff0c;新的数据到来…

AI时代新爬虫:网站自动转LLM数据,firecrawl深度玩法解读

在大模型的时代&#xff0c;爬虫技术也有了很多新的发展&#xff0c;最近出现了专门针对大模型来提取网站信息的爬虫&#xff0c;一键将网页内容转换为LLM-ready的数据。今天我们介绍其中的开源热门代表&#xff1a;firecrawl。 firecrawl 是什么 FireCrawl是一款创新的爬虫工…

《2023-2024中国数据资产发展研究报告》

中国电子信息产业发展研究院发布《2023-2024中国数据资产发展研究报告》&#xff08;下称《报告》&#xff09;&#xff0c;紧跟国家战略部署&#xff0c;调研国内数据资产发展现状&#xff0c;掌握数据价值实现路径&#xff0c;助力释放数字经济新动能。 《报告》从数据资产相…

这家来自内蒙古的物流企业,用另一种方式减碳超500吨

2016年&#xff0c;多蒙德实业集团整合旗下物流及运销板块&#xff0c;组建成立了内蒙古多蒙德科技有限公司&#xff08;以下简称“多蒙德”&#xff09;&#xff0c;整合互联网、大数据及智慧物流为一体&#xff0c;自主研发多蒙达网络货运平台及多个供应链智慧系统&#xff0…

pytest + yaml 框架 -62.支持yaml和json2种格式用例

前言 v1.5.7版本开始新增json格式用例支持,本次版本改动内容 1.支持 .json 文件用例2.优化日志中文件后缀名称.yml .yaml .json3.ruamel.yaml 版本兼容0.18.6yaml 格式用例 yaml 格式用例示例,test_a.yml test_demo:name: postrequest:method: POSTurl: http://httpbin.or…

24年下教资笔试报名照片要求及处理方法

24年下教资笔试报名照片要求及处理方法

关闭kylin(麒麟)系统的安全认证(烦人的安全认证)

打开grub sudo vim /etc/default/grup修改安全认证选项 增加12行&#xff0c;把13行注释掉 保存更改, 然后执行下面的命令&#xff1a; sudo sync sudo reboot重启成功后&#xff0c;就关闭了安全认证了~~~~~。 总体来讲&#xff0c;kylin还是基于ubuntu的内核的&#xff0c;…

文章解读与仿真程序复现思路——电工技术学报EI\CSCD\北大核心《考虑源网储协同配合下的移动式波浪能发电平台并网优化调度》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

PostgreSQL基础知识

PostgreSQL简介 PostgreSQL是一个强大的开源对象关系数据库系统&#xff0c;它使用并扩展了SQL语言&#xff0c;并结合了许多功能&#xff0c;可以安全地存储和扩展最复杂的数据工作负载。PostgreSQL的起源可以追溯到1986年&#xff0c;是加州大学伯克利分校POSTGRES项目的一部…

细说ARM MCU的串口接收数据的实现过程

目录 一、硬件及工程 1、硬件 2、软件目的 3、创建.ioc工程 二、 代码修改 1、串口初始化函数MX_USART2_UART_Init() &#xff08;1&#xff09;MX_USART2_UART_Init()串口参数初始化函数 &#xff08;2&#xff09;HAL_UART_MspInit()串口功能模块初始化函数 2、串口…

深入解析Prometheus:强大的开源监控与告警系统

目录 引言 一、运维监控平台的设计思路 &#xff08;一&#xff09;设计思路 1.数据收集模块 2.数据提取模块 3.监控告警模块 &#xff08;二&#xff09;监控平台层级 二、Prometheus简介 &#xff08;一&#xff09;基本介绍 &#xff08;二&#xff09;核心特征 …

Wake Lock API:保持设备唤醒的利器

随着移动设备和 Web 应用的普及&#xff0c;如何有效管理设备的电源成为开发者们关注的一个重要问题。Wake Lock API 是一种强大的工具&#xff0c;它允许 Web 应用请求设备保持唤醒状态&#xff0c;从而防止屏幕变暗或设备进入睡眠模式。在这篇文章中&#xff0c;我们将详细介…