方案一:参考了ANR-WatchDog机制
ANR-WatchDog机制原理不复杂,它内部启动了一个子线程,定时通过主线程Handler发送Message,然后定时去检查Message的处理结果。
通俗来说就是利用了Android系统MessageQueue队列的排队处理特性。
通过主线程Handler发送消息到MessageQueue队列,5秒去看下这个Message有没有被消费,如果消费了则代表没有卡顿,如果没有,则代表有卡顿,当然这个5秒是可调节的。
这种监控非常简单,接入成本较低,但是有弊端,比如
- 1.它会漏报情况,举个例子,比如我们以5秒未响应作为卡顿阈值,如果我们发送监听Message的时间在上一个消息处理的第2-5秒之间,那这种就会产生漏报。
- 2.监听间隔越小,系统开销越大。
- 3.即便监听到了,不好区分卡顿链路,无法提供准确的卡顿堆栈。
方案二:参考BlockCanary开源库,利用Looper.loop() Printer打印机制
每次Message处理(也就是dispatchMessage(msg))都会在处理前,和处理后通过Looper.mLogging打印日志。
我们只需知道打印日志的时间差即可知道Message的处理耗时。当耗时超过我们的阈值时我们即可收集调用堆栈,然后根据堆栈进行针对性优化即可。
这种方案也有弊端,比如
- 1.View的TouchEvent事件是在queue.next()中处理的,只统计dispatchMessage(msg)前后耗时,不会覆盖到View的TouchEvent耗时。
- 2.IdleHandler.queueIdle()也在queue.next()中,当主线程空闲会调用IdleHandler,此时IdleHandler也是在主线程执行,当过于耗时时也可能出现卡顿,甚至到只ANR,这种场景也无法监控。
- 3.SyncBarrier(同步屏障)的泄漏同样无法被监控到,这种情况比较少见,参考了微信的监控方案。
比如
/*** Run the message queue in this thread. Be sure to call* {@link #quit()} to end the loop.*/public static void loop() {final Looper me = myLooper();if (me == null) {throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");}final MessageQueue queue = me.mQueue;// Make sure the identity of this thread is that of the local process,// and keep track of what that identity token actually is.Binder.clearCallingIdentity();final long ident = Binder.clearCallingIdentity();// Allow overriding a threshold with a system prop. e.g.// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'final int thresholdOverride =SystemProperties.getInt("log.looper."+ Process.myUid() + "."+ Thread.currentThread().getName()+ ".slow", 0);boolean slowDeliveryDetected = false;for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;}// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {msg.target.dispatchMessage(msg);if (observer != null) {observer.messageDispatched(token, msg);}dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;}...if (logging != null) {logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);}}}
每次Message处理(也就是dispatchMessage(msg))都会在处理前,和处理后通过Looper.mLogging打印日志.
我们只需知道打印日志的时间差即可知道Message的处理耗时。当耗时超过我们的阈值的时候就是发生卡顿的时机,我们触发收集调用堆栈,然后根据堆栈进行针对性优化即可。
替换Printer可以通过Looper提供的方法,然后自定义Printer进行计算统计即可。
/*** Control logging of messages as they are processed by this Looper. If* enabled, a log message will be written to <var>printer</var>* at the beginning and ending of each message dispatch, identifying the* target Handler and message contents.** @param printer A Printer object that will receive log messages, or* null to disable message logging.*/public void setMessageLogging(@Nullable Printer printer) {mLogging = printer;}@Override
public void println(String x) {if (mStopWhenDebugging && Debug.isDebuggerConnected()) {return;}if (!mPrintingStarted) {//1、记录第一次执行时间,mStartTimestampmStartTimestamp = System.currentTimeMillis();mStartThreadTimestamp = SystemClock.currentThreadTimeMillis();mPrintingStarted = true;startDump(); //2、开始dump堆栈信息} else {//3、第二次就进来这里了,调用isBlock 判断是否卡顿final long endTime = System.currentTimeMillis();mPrintingStarted = false;if (isBlock(endTime)) {notifyBlockEvent(endTime);}stopDump(); //4、结束dump堆栈信息}}//判断是否卡顿的代码很简单,跟上次处理消息时间比较,比如大于3秒,就认为卡顿了private boolean isBlock(long endTime) {return endTime - mStartTimestamp > mBlockThresholdMillis;}//获取堆栈数据protected void doSample() {StringBuilder stringBuilder = new StringBuilder();// 获取堆栈信息for (StackTraceElement stackTraceElement : mCurrentThread.getStackTrace()) {stringBuilder.append(stackTraceElement.toString()).append(BlockInfo.SEPARATOR);}synchronized (sStackMap) {// LinkedHashMap中数据超过100个就remove掉链表最前面的if (sStackMap.size() == mMaxEntryCount && mMaxEntryCount > 0) {sStackMap.remove(sStackMap.keySet().iterator().next());}//放入LinkedHashMap,时间作为key,value是堆栈信息sStackMap.put(System.currentTimeMillis(), stringBuilder.toString());}}
??怎么监控TouchEvent和IdelHander的卡顿