借助Historian Connector + TDengine,打造工业创新底座

在工业自动化的领域中,数据的采集、存储和分析是实现高效决策和操作的基石。AVEVA Historian (原 Wonderware Historian) 作为领先的工业实时数据库,专注于收集和存储高保真度的历史工艺数据。与此同时,TDengine 作为一款专为时序数据打造的高性能数据库,在处理和分析大量实时、历史时序数据方面展现出无与伦比的优越性。

在最新发布的 TDengine 3.2.3.0 版本中,我们进一步更新了 TDengine 的数据接入功能,推出了一款新的连接器,旨在实现 AVEVA Historian 与 TDengine 的集成。基于此,本文将阐述把 AVEVA Historian 的历史数据和实时数据整合进入 TDengine 的创新方法,以及这种结合如何能够极大地提升数据利用率,打造一个工业创新底座,推动工业自动化高效发展。

从时序数据的关键应用场景分析优化方案

我们先来回顾下当下工业场景几种典型时序数据处理方案:

  1. 关系型数据库(例如 Oracle/MySQL、达梦、南大通用):关系型数据库在处理海量时序数据时,读写性能较低,分布式支持差。随着数据的增加,查询的速度也会变慢。典型的应用场景包括低频监控场景和电力 SCADA 历史库。

  2. 传统工业实时库(例如 PI、AVEVA Historian、亚控、海迅):尽管传统工业实时库在工业数据存储中有着长期的功效,但它们的架构已经过时,缺乏分布式解决方案,不能水平扩展。而且,它们依赖于 Windows 等环境,在数据分析能力上较弱,且往往是封闭系统。这类数据库主要用于 SCADA 系统和生产监控系统。

  3. NoSQL 数据库(例如 MongoDB、Cassandra):这类数据库的问题在于计算实时性较差,查询速度慢,对内存和 CPU 的计算开销大,没有针对时序数据的优化。它们主要用于处理非结构化数据存储和爬虫数据。

  4. Hadoop 大数据平台(例如 HBase、Zookeeper、Redis、Flink/Spark):虽然这类平台支持分布式,但其采用非结构化方式处理时序数据,组件众多,架构臃肿,单节点效率低,硬件和人力维护成本非常高。它们主要用于通用大数据平台和舆情电商大数据。

在当前的工业企业中,创新应用需求旺盛,时序数据处理关键的应用场景包括智能决策支持、设备故障预警、产品质量分析与预测、智能制造与数字孪生、能耗管理与节能减排。这些关键场景突出了工业时序大数据在创新应用中的核心价值,工业企业只有采用先进的解决方案,才能够加快创新步伐并在竞争激烈的市场中实现差异化。

在工业场景中,多个工厂或车间通常会部署独立的 SCADA/Historian 系统,如 AVEVA Wonderware 和 PI 系统,以管理实时和历史数据。这是目前工业自动化的常态,数据分布在各个现场的数据库中。

时序数据向中心侧集中的优势在于,它可以增强对数据的整体控制力,使得企业更好地利用它们的数据资产。数据的集中处理为全局数据可视化带来了可能,为业务创新提供灵感和快速验证的手段,帮助企业更好地管理和分析数据,快速响应而提取有价值的洞见,并依此及时做出商业决策。

SCADA/Historian 也提供了数据集中方案,确实在某些方面能够满足需求,但面临的挑战是它们难以支持海量测点(传感器、设备等)的数据量,难以满足创新应用的对大量获取时序数据的需求。当数据量非常大时,SCADA/Historian 数据消费接口的能力较弱,可能会经历高延时,甚至无法获取需要的数据集。

要有效应对这些挑战,需要从以下几个方面优化方案:

  1. 利用好已有的投资:很多情况下,企业已经采购、部署了多套 SCADA/Historian,投资已经形成,方案必须考虑如何充分利用已建成系统的能力,避免重复投资。

  2. 提高数据消费接口的能力:增强数据接口的能力,以确保即使在数据量很大时也能快速、高效地消费数据。

  3. 降低延时:提升系统的性能以减少处理和提取数据时的延时,确保可以及时地获取数据。

  4. 实现实时和历史数据的整合:数据的整合可以提高存储空间利用率,并为分析和决策提供更完整的数据视图。实时和历史数据的结合还能支持更复杂的创新应用,如预测维护、能耗管理和优化操作。

  5. 支撑海量测点:提高系统能够处理的测点数量,以适应越来越多传感器数据的需求。

  6. 推动创新应用的发展:构建支持创新的基础架构,应对创新应用需求、新兴的工业应用,如预测性维护、资产性能管理、能效优化等,需要对数据进行更深层次的消费、分析和更快速的处理。

TDengine 作为一款极简的时序大数据平台,具有高效的数据写入和查询性能,适合处理海量、时序性的工业数据。除了实时与历史合一的时序库核心功能外,还提供了消息队列、事件驱动流计算、读写缓存,以及多数据源接入的能力。如何实现融合上述六点的方案优化,TDengine 也给出了答案。

整合 AVEVA Historian 数据到 TDengine

本文方案中,将利用 TDengine 企业版 taosX 的多数据源接入能力汇集多路 AVEVA Historian 现场数据,持久化至中心侧 TDengine 集群。

其特点如下:

  1. 数据迁移:从 AVEVA Historian 系统迁移现有的历史数据到 TDengine。

  2. 数据同步:支持实时和历史数据的同步,实现 AVEVA Historian 实时(Runtime.dbo.Live)和历史数据(Runtime.dbo.History)至 TDengine 之间的数据同步。

  3. 支持海量测点:TDengine 支持 10 亿时间线,轻松应对目前工业大数据场景。

  4. 充分利用已有投资:已有的 AVEVA Historian 将继续发挥作用,同时在 TDengine 平台上支持创新业务的开发。

  5. 时序数据优化存储:利用 TDengine 的高效数据压缩和存储机制,优化数据在新平台上的存储。

  6. 查询性能显著提升:与 Historian 的查询性能比较,TDengine 无论在投影查询还是聚合查询,均提升几个数量级的性能。

  7. 支持数据订阅:TDengine 提供了结构化的消息队列,当数据入库的同时,可根据业务需要创建主题,支持实时消费以驱动创新应用落地。

  8. 支持多种部署环境:LInux & Windows

  9. 支持完整 ETL 特性:taosX 组件支持完整的解析、提取拆分、过滤以及数据映射,零代码即可完成外部数据源接入 TDengine。

本方案的基本环境要求有:

  • AVEVA Historian 接入需 TDengine 企业版支持

  • 远端采集需通过代理模式接入,采集现场须部署 taosX Agent

  • 支持 AVEVA Historian 2017 以后的版本

下面以数据迁移为例,介绍 AVEVA Historian 的历史视图数据如何迁移至 TDengine。

  1. 先完成准备工作:在 TDengine 中建库、建超级表

  2. 登入 taosExplorer,创建数据写入任务,类型:AVEVA Historian

  3. 填写任务基本信息:任务名称、目标数据库、Historian 服务器地址、端口、认证信息

  4. 填写采集配置:migrate 模式、选择标签点位范围(默认所有点位)、设置源数据起始终止时间、查询时间窗口跨度

  5. 数据解析与过滤:因 Historian 发送过来的数据是结构化的,无需额外配置解析器和过滤器

  6. 数据映射:选择目标超级表后,系统会自动匹配部分字段,没有匹配的字段,手工指定映射关系即可

  7. 启动任务

数据同步 synchronize 与数据迁移 migrate 类似,不同之处在于:

  • 支持两个来源:Runtime.dbo.History & Runtime.dbo.Live

  • 任务结束时间可以不设定,意味着可以一直同步下去,直至人工终止

本方案还可以与 OPC 方案融合:历史数据通过 Historian 导入 TDengine,实时数据通过 OPC 汇集至 TDengine。新方案的优点是,通过 OPC 支持的订阅特性实现实时数据即时采集,一旦变化就立刻采集至 TDengine。

新方案同样是基于 taosX 组件,维护方便。

结语

对于曾投资 AVEVA Wonderware 的工业企业,在面临数字化转型的挑战时,Historian Connector 结合 TDengine 的解决方案便能成为他们的强大后盾。此方案不仅能快速打通数字化转型的难关,还能携业务创新之力,开拓数字化潜能。

此外,本方案具有优秀的融合能力,可与各类数据采集解决方案无缝结合。例如,通过与 OPC Connector 数据采集方案的整合,历史数据得以从 Historian 顺畅导入至 TDengine,同时实时数据亦可通过 OPC 即时汇集至 TDengine,实现现场时序数据的高效集中处理。

本方案所依托的是 TDengine Enterprise 企业版的强大功能(且未来我们将推出 TDengine Cloud 版本)。如若贵企业正寻求这方面的解决方案,欢迎主动接洽北京涛思的专业商务团队,一起探索先进的数据处理之道。

关于 AVEVA Wonderware

Wonderware 公司成立于 1987 年,总部位于美国洛杉矶,是全球工业自动化领域的知名品牌。其先被施耐德电气收购,后并入 AVEVA。AVEVA Wonderware 应用行业广泛,在连续生产过程控制和离散制造领域优势明显。主要应用于烟草生产、水处理、电力、石油天然气、化工、钢铁冶金、食品饮料、制药、汽车制造、物流仓储等行业。其产品包括但不限于 In Touch HMI(人机界面)、System Platform(系统平台)、Historian(历史数据记录与分析)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/26595.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FullCalendar日历组件集成实战(11)

背景 有一些应用系统或应用功能,如日程管理、任务管理需要使用到日历组件。虽然Element Plus也提供了日历组件,但功能比较简单,用来做数据展现勉强可用。但如果需要进行复杂的数据展示,以及互动操作如通过点击添加事件&#xff0…

怎么防止源代码泄露?9种方法教会你!

怎么防止源代码泄露?首先要了解员工可以通过哪些方式将源代码传输出去! 物理方法: — 网线直连,即把网线从墙上插头拔下来,然后和一个非受控电脑直连; — winPE启动,通过光盘或U盘的winPE启动,甚…

Mybatis save、saveOrUpdate、update的区别

哈喽,大家好,我是木头左! 1. save方法 Mybatis的save方法用于插入一条新的记录。当数据库中不存在相同的记录时,会执行插入操作;如果已经存在相同的记录,则会抛出异常。 int result sqlSession.insert(&…

电脑桌面提醒做事的app 好用的桌面提醒app

在快节奏的现代生活中,我们每天都要通过电脑处理大量的工作事项。然而,繁忙的工作节奏有时会导致我们遗忘某些重要任务,从而带来不必要的损失。为了避免这种情况,选择一款好用的桌面提醒app显得尤为重要。 想象一下,你…

C语言| 数组

直接定义一个数组&#xff0c;并给所有元素赋值。 数组的下标从0开始&#xff0c;下标又表示数组的长度。 【程序代码】 #include <stdio.h> int main(void) { int a[5] {1, 2, 3, 4, 5}; int i; for(i0; i<5; i) { printf("a[%d] %d\…

翻译: Gen AI生成式人工智能学习资源路线图一

Introduction 介绍 本文档旨在作为学习现代人工智能系统背后的关键概念的手册。考虑到人工智能最近的发展速度&#xff0c;确实没有一个好的教科书式的资源来快速了解 LLMs 或其他生成模型的最新和最伟大的创新&#xff0c;但互联网上有大量关于这些主题的优秀解释资源&#x…

蒂姆·库克解释Apple Intelligence和与ChatGPT合作的区别|TodayAI

在2024年全球开发者大会&#xff08;WWDC 2024&#xff09;上&#xff0c;苹果公司首席执行官蒂姆库克&#xff08;Tim Cook&#xff09;隆重介绍了公司的最新人工智能&#xff08;AI&#xff09;计划——Apple Intelligence&#xff0c;并宣布了与OpenAI的ChatGPT的合作。虽然…

定时器0电机控制PWM输出

/*立式不锈钢波纹管机控制板2021 2 26 pcb PAST******/ #include <REG52.H> #include <intrins.H> #define uint unsigned int #define uchar unsigned char #define …

JVM性能优化案例:优化垃圾回收器的年轻代和老年代占比

JVM性能优化案例&#xff1a;优化垃圾回收器的年轻代和老年代占比 我们有一款在线交易系统&#xff0c;要求低延迟和高吞吐量。系统运行在Ubuntu服务器上&#xff0c;使用OpenJDK 11&#xff0c;并启用了G1垃圾回收器。以下是系统的基本配置和GC日志信息&#xff1a; 操作系统…

CID引流电商下的3C产品选品策略深度解析

​摘要&#xff1a;随着电商行业的迅猛发展和消费者需求的日益多样化&#xff0c;CID引流电商作为一种新兴的电商模式&#xff0c;逐渐受到了广泛关注。在这一模式下&#xff0c;3C产品作为高客单价、高技术含量的代表品类&#xff0c;其选品策略的制定显得尤为重要。本文将从多…

KEYSIGHT N1000A与KEYSIGHT 86100D 区别?

N1000A与86100D设计理念和应用领域 N1000A&#xff1a;N1000A是一款宽带宽示波器主机&#xff0c;主要用于高速数字设计的精确测量&#xff0c;从50 Mb/s到超过80 Gb/s。它适用于光收发机设计和生产测试、ASIC/FPGA/IC设计和表征、串行总线设计、电缆和印刷电路板&#xff08;P…

如何使您的IT资产审计变得轻而易举?

无论您在审核准备方面处于哪个阶段&#xff0c;强大的资产管理策略都至关重要。现在&#xff0c;不可否认的是最初的障碍——精确追踪每一台设备、软件许可证和外围设备可能会让人感到不知所措。 然而&#xff0c;好消息是有简化流程可以帮助您将资产管理从一项令人望而却步的…

Elasticsearch 第二期:倒排索引,分析,映射

前言 正像前面所说&#xff0c;ES真正强大之处在于可以从无规律的数据中找出有意义的信息——从“大数据”到“大信息”。这也是Elasticsearch一开始就将自己定位为搜索引擎&#xff0c;而不是数据存储的一个原因。因此用这一篇文字记录ES搜索的过程。 关于ES搜索计划分两篇或…

Python私教张大鹏 Vue3整合AntDesignVue之Checkbox 多选框

何时使用 在一组可选项中进行多项选择时&#xff1b; 单独使用可以表示两种状态之间的切换&#xff0c;和 switch 类似。区别在于切换 switch 会直接触发状态改变&#xff0c;而 checkbox 一般用于状态标记&#xff0c;需要和提交操作配合。 案例&#xff1a;多选框组件 核心…

Hack The Box-Blurry

总体思路 CVE-2024-24590->修改脚本/劫持python库 信息收集&端口利用 nmap -sSVC blurry.htbStarting Nmap 7.94SVN ( https://nmap.org ) at 2024-06-10 21:40 EDT Nmap scan report for app.blurry.htb (10.10.11.19) Host is up (0.20s latency).PORT STATE S…

【电机】了解无刷直流电机BLDC

1 介绍 无刷直流电机&#xff08;Brushless Direct Current Motor&#xff0c;简称BLDCM&#xff09;由电动机主体和驱动器组成&#xff0c;是一种典型的机电一体化产品。无刷电机是指无电刷和换向器&#xff08;或集电环&#xff09;的电机&#xff0c;又称无换向器电机。这是…

本地靶场搭建

1、windows service2003 链接&#xff1a;https://pan.baidu.com/s/1RIealrcfcDWKu1AIuYFbAQ?pwd4bv8 提取码&#xff1a;4bv8 2、asp环境搭建&#xff08;虚拟机内&#xff09; ①asp工作原理&#xff1a; 客户发送网站请求&#xff0c;iis接收客户请求&#xff0c;解析…

基于JSP的超市管理系统

你好呀&#xff0c;我是计算机学长猫哥&#xff01;如果有相关需求&#xff0c;文末可以找到我的联系方式。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;JSP MyBatis 工具&#xff1a;IDEA/Eclipse、Navicat、Maven 系统展示 员工管理界面图 管…

Ecahrts横向柱状图自动滚动

1.定义一个定时器标识 let timer: NodeJS.Timer; // 定时器 2.定义展示的数据的条数 const dataZoomEndValue 5; // 数据窗口范围的结束数值(一次性展示几个) 3.设置datazoom的相关参数 dataZoom: [{show: false, // 是否显示滑动条xAxisIndex: 0, // 表示从X轴的零刻度线…

谷粒商城实战(035 k8s集群学习1-前置介绍)

Java项目《谷粒商城》架构师级Java项目实战&#xff0c;对标阿里P6-P7&#xff0c;全网最强 总时长 104:45:00 共408P 此文章包含第339p-第p342的内容 分布式高级篇总结 高可用集群 内容 k8s介绍 为什么使用k8s 组件 master组件 node&#xff08;节点&#xff09;组件 要部…