【CS.AL】八大排序算法 —— 快速排序全揭秘:从基础到优化

在这里插入图片描述

文章目录

    • 1. 快速排序简介
      • 1.1 定义
      • 1.2 时间复杂度
      • 1.3 相关资源
    • 2. 最优的Partition算法 🔥
      • 2.1 Introsort简介
      • 2.2 过程示例
    • 3. 非递归快速排序
      • 3.1 实现
    • 4. 递归快速排序
      • 4.1 实现
    • 5. 有问题的Partition
      • 5.1 实现
    • 6. 三中位数主元选择
      • 6.1 实现
    • 7. 总结

1. 快速排序简介

1.1 定义

快速排序:快速排序也采用分治策略,选择一个基准元素,将数组分成比基准小和比基准大的两部分,再对两部分递归地进行排序。快速排序的平均时间复杂度为O(n log n),是目前应用广泛的排序算法之一。

1.2 时间复杂度

  • 最坏情况:O(n²)
  • 平均情况:O(n log₂n)
  • 最佳情况:O(n log₂n)

1.3 相关资源

912. 排序数组 - 力扣(LeetCode)

2. 最优的Partition算法 🔥

2.1 Introsort简介

Introsort(内排序)从快速排序开始作为主要排序算法。在最坏情况下(例如,数组已经排序或接近排序),快速排序可能退化为O(n²)时间复杂度。为了避免快速排序的最坏情况,Introsort引入了一个最大递归深度。当递归深度超过这个阈值时,算法切换到堆排序或归并排序,以确保更好的最坏情况性能。

template <typename Tp>
int partition(vector<Tp>& nums, int lIdx, int rIdx) {int randomIndex = lIdx + rand() % (rIdx - lIdx + 1);std::swap(nums[randomIndex], nums[rIdx]);Tp pivot = nums[rIdx];int lBoundary = lIdx;int rBoundary = rIdx - 1;for(; ; ++lBoundary, --rBoundary){for (; lBoundary <= rBoundary && nums[lBoundary] < pivot; ++lBoundary) {}for (; lBoundary <= rBoundary && nums[rBoundary] > pivot; --rBoundary) {}if (lBoundary > rBoundary) {break;}std::swap(nums[lBoundary], nums[rBoundary]);}std::swap(nums[rIdx], nums[lBoundary]);return lBoundary;
}

2.2 过程示例

  • 假设 nums = [7, 3, 5, 1, 2, 6, 4],随机选择的pivot下标为5,即6与最右的4交换,得到 nums = [7, 3, 5, 1, 2, 4, 6]
  • 分区指针起始如图:left (lIdx) -> 7, 3, 5, 1, 2, 4 <- right (rIdx), 6(pivot)
  • 左指针移动到第一个大于或等于主元的元素(即7),右指针移动到第一个小于或等于主元的元素(为4):left (lIdx) -> 7, 3, 5, 1, 2, 4 <- right (rIdx), 6(pivot)
  • 交换左右指针处的元素:left (lIdx) -> 4, 3, 5, 1, 2, 7 <- right (rIdx), 6(pivot)
  • 继续该过程,直到左右指针相遇:4, 3, 5, 1, 2 <- right (rIdx), left (lIdx) -> 7, 6(pivot)
  • 将枢轴元素(当前位于右指针处)与左指针处的元素交换(6和7交换)。

3. 非递归快速排序

3.1 实现

template <typename Tp>
void quickSort(vector<Tp>& nums) {std::stack<std::pair<int, int>> stack;stack.push(std::make_pair(0, nums.size() - 1));while (!stack.empty()) {std::pair<int, int> current = stack.top();stack.pop();int lIdx = current.first;int rIdx = current.second;if (lIdx < rIdx) {int boundary = partition(nums, lIdx, rIdx);stack.push(std::make_pair(lIdx, boundary - 1));stack.push(std::make_pair(boundary + 1, rIdx));}}
}

4. 递归快速排序

4.1 实现

template <typename Tp>
void qSortRecursion(vector<Tp>& nums, const int& lIdx, const int& rIdx) {if (lIdx < rIdx) {int boundary = partition(nums, lIdx, rIdx);qSortRecursion(nums, lIdx, boundary - 1);qSortRecursion(nums, boundary + 1, rIdx);}
}template <typename Tp>
void quickSort(vector<Tp>& nums) {qSortRecursion(nums, 0, nums.size() - 1);
}

5. 有问题的Partition

5.1 实现

大量重复元素会超时:

template <typename Tp>
int partition(vector<Tp>& nums, int lIdx, int rIdx) {// 较为有序时, 避免超时int randIdx = lIdx + rand() % (rIdx - lIdx + 1);std::swap(nums[randIdx], nums[rIdx]);int pivot = nums[rIdx];int boundary = lIdx;for (int idx = lIdx; idx < rIdx; ++idx) {if (nums[idx] < pivot) {std::swap(nums[idx], nums[boundary]);++boundary;}}std::swap(nums[boundary], nums[rIdx]); // pivotreturn boundary;
}

通过内排序Introsort修复:

template <typename Tp>
void quickSort(vector<Tp>& nums) {double recThreshold = log10(nums.size()) / log10(2);int recDepth = 0;std::stack<std::pair<int, int>> stack;stack.push(std::make_pair(0, nums.size() - 1));while (!stack.empty()) {++recDepth;if (recDepth >= recThreshold) {heapSort(nums);break;}std::pair<int, int> current = stack.top();stack.pop();int lIdx = current.first;int rIdx = current.second;if (lIdx < rIdx) {int boundary = partition(nums, lIdx, rIdx);stack.push(std::make_pair(lIdx, boundary - 1));stack.push(std::make_pair(boundary + 1, rIdx));}}
}

6. 三中位数主元选择

6.1 实现

template <typename Tp>
int choosePivot(vector<Tp>& nums, int lIdx, int rIdx) {int mid = lIdx + (rIdx - lIdx) / 2;if (nums[lIdx] > nums[mid]) {std::swap(nums[lIdx], nums[mid]);}if (nums[mid] > nums[rIdx]) {std::swap(nums[mid], nums[rIdx]);}if (nums[lIdx] > nums[mid]) {std::swap(nums[lIdx], nums[mid]);}return mid;
}template <typename Tp>
int partition(vector<Tp>& nums, int lIdx, int rIdx) {int pivotIdx = choosePivot(nums, lIdx, rIdx);std::swap(nums[pivotIdx], nums[rIdx]);Tp pivot = nums[rIdx];int lBoundary = lIdx;int rBoundary = rIdx - 1;for(; ; ++lBoundary, --rBoundary){for (; lBoundary <= rBoundary && nums[lBoundary] < pivot; ++lBoundary) {}for (; lBoundary <= rBoundary && nums[rBoundary] > pivot; --rBoundary) {}if (lBoundary > rBoundary) {break;}std::swap(nums[lBoundary], nums[rBoundary]);}std::swap(nums[rIdx], nums[lBoundary]);return lBoundary;
}

7. 总结

快速排序作为一种现代化的排序算法,通过分治策略和递归实现,高效地解决了大多数排序问题。使用最优的Partition算法和三中位数主元选择可以有效优化快速排序的性能,并避免最坏情况的出现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/25103.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

新增FTP功能、支持添加Redis远程数据库,专业版新增网站监控和黑金主题,1Panel开源面板v1.10.10版本发布

2024年6月7日&#xff0c;现代化、开源的Linux服务器运维管理面板1Panel发布v1.10.10版本。 在这一版本中&#xff0c;1Panel新增了多项实用功能。社区版方面&#xff0c;新增了FTP功能、支持添加Redis远程数据库、支持设置压缩密码&#xff0c;并新增了清理镜像构建缓存的功能…

[ue5]建模场景学习笔记(5)——必修内容可交互的地形,交互沙(2)

1需求分析&#xff1a; 继续制作可交互沙子内容&#xff0c;前面我们已经让角色在指定区域留下痕迹&#xff0c;那么能否让区域移动起来&#xff0c;这样才能逐步满足角色走到哪里都能产生交互痕迹&#xff0c;满足更大的地图。 2.操作实现&#xff1a; 1.首先建立角色能产生…

翻译《The Old New Thing》- How do I obtain the computer manufacturer’s name?

How do I obtain the computer manufacturers name? - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20081218-00/?p19783 Raymond Chen 2008年08月08日 如何获取计算机制造商的名字&#xff1f; 一位客户想要一种方法来确定计算机制造商的…

C# .NET 异步实现方式

一、异步编程模式 .NET 提供了执行异步操作的三种模式&#xff1a; 基于任务的异步模式 (TAP) &#xff0c;该模式使用单一方法表示异步操作的开始和完成。 TAP 是在 .NET Framework 4 中引入的。 这是在 .NET 中进行异步编程的推荐方法。 C# 中的 async 和 await 关键词以及 …

HTML+CSS+JS 密码灯登录表单

效果演示 实现了一个登录页面,包括一个标题、两个输入框(用户名和密码)、一个登录按钮和一个眼睛图标。点击眼睛图标可以显示或隐藏密码。页面背景有两个圆形的半透明元素,整个页面使用了flex布局,并且在水平和垂直方向上都居中对齐。登录框使用了阴影效果和圆角边框,并且…

linux centos redis-6.2.6一键安装及配置密码

linux centos redis-6.2.6一键安装及配置密码 redis基本原理一、操作阶段&#xff0c;开始安装 redis基本原理 redis作为非关系型nosql数据库&#xff0c;一般公司会作为缓存层&#xff0c;存储唯一会话id&#xff0c;以及请求削峰作用 一、数据结构 Redis支持多种数据结构&a…

【AI时代,生命修行】

今日分享&#x1f4d2;&#xff0c;AI时代&#xff0c; 生命 与 修行&#xff1a; 不要用太多时间去工作&#xff0c;尤其是在人工智能时代。如果谁还在用传统的线性的费时间的这种努力的工作方式&#xff0c;只能说太落伍了。 我只说给同频的朋友们无关的人请划走。因为很多…

JVM类加载机制详解(JDK源码级别)

提示&#xff1a;从JDK源码级别彻底剖析JVM类加载机制、双亲委派机制、全盘负责委托机制、打破双亲委派机制的程序、Tomcat打破双亲委派机制、tomcat自定义类加载器详解、tomcat的几个主要类加载器、手写tomcat类加载器 文章目录 前言一、loadClass的类加载大概有如下步骤二、j…

Hadoop3:MapReduce源码解读之Map阶段的FileInputFormat的切片原理(2)

Job那块的断点代码截图省略&#xff0c;直接进入切片逻辑 参考&#xff1a;Hadoop3&#xff1a;MapReduce源码解读之Map阶段的Job任务提交流程&#xff08;1&#xff09; 4、FileInputFormat切片源码解析 切片入口 获取切片 获取切片最大的Size和切片最小的Size 判断文件是…

LeMeViT:具有可学习元令牌的高效ViT

本文提出使用可学习的元令牌来制定稀疏令牌&#xff0c;这有效地学习了关键信息&#xff0c;同时提高了推理速度。从技术上讲&#xff0c;主题标记首先通过交叉关注从图像标记中初始化。提出了双交叉注意&#xff08;DCA&#xff09;来促进图像令牌和元令牌之间的信息交换&…

SpringBoot2+Vue3开发课程审核流程系统

SpringBoot2Vue3开发课程审核流程系统 简介 此系统实现了课程审核全流程功能并使用了Activiti7工作流技术&#xff0c;功能包含&#xff1a;课程管理、用户管理、流程定义、课程审核&#xff08;我的申请、我的代办、我的已办&#xff09; 功能介绍 课程管理 对课程信息的管…

git凭证

默认是manager # 将凭证缓存到内存中&#xff0c;默认缓存15分钟 git config --global credential.helper cache# 将凭证存储到磁盘上的纯文本文件中 git config --global credential.helper store# 使用 Git 凭证管理器 git config --global credential.helper manager-core查…

【线性代数】向量空间,子空间

向量空间 设V为n维向量的集合&#xff0c;如果V非空&#xff0c;且集合V对于向量的加法以及数乘两种运算封闭&#xff0c;那么就称集合V为向量空间 x&#xff0c;y是n维列向量。 x 向量组等价说明可以互相线性表示 向量组等价则生成的向量空间是一样的 子空间 例题18是三位向…

【设计模式】行为型设计模式之 状态模式,带你探究有限状态机FSM的三种实现方式

什么是有限状态机 Finite state Machine FSM 简称状态机&#xff1a;状态机由三部分组成&#xff0c;状态(State) 事件(Event) 和动作(Action)组成。 其中事件也被称为转移条件&#xff0c;事件触发状态的转移和动作的执行。不过动作不是必须的&#xff0c;也可能只存在状态转…

全链路性能测试:Nginx 负载均衡的性能分析和调优

为什么性能测试很多同学觉得是一个比较难以自学上岸的测试领域,是因为真正做全链路的性能测试是比较难的。所谓的全链路就是在项目的整个链路上任何一环节都有可能存在性能测试瓶颈,我们都需要能够通过分析性能的监控指标找到对应的问题。 我们今天要讲的Nginx负载均衡就是…

C++中的一些困惑(长期更新中)

C中的一些困惑 文章目录 C中的一些困惑1. using std::具体命名与using namespace std;2. 【int \*p[10] 】与 【int (\*p)[10]】3. main()函数可带参&#xff0c;参从何来&#xff1f;4. constexpr函数的返回值可不为常量&#xff0c;那这时constexpr关键字作用是什么&#xff…

网页中生成ZIP文件,Zip 压缩、解压技术在 HTML5 浏览器中的应用

JSZip 是一款可以创建、读取、修改 .zip 文件的 javaScript 工具。在 web 应用中&#xff0c;免不了需要从 web 服务器中获取资源&#xff0c;如果可以将所有的资源都合并到一个 .zip 文件中&#xff0c;这时候只需要做一次请求&#xff0c;这样既减少了服务器的压力&#xff0…

Python:处理矩阵之NumPy库(上)

目录 1.前言 2.Python中打开文件操作 3.初步认识NumPy库 4.使用NumPy库 5.NumPy库中的维度 6.array函数 7.arange函数 8.linspace函数 9.logspace函数 10.zeros函数 11.eye函数 前言 NumPy库是一个开源的Python科学计算库&#xff0c;它提供了高性能的多维数组对象、派生对…

11-数组与指针深入理解——题型理解

11-数组与指针深入理解——题型理解 文章目录 11-数组与指针深入理解——题型理解一、理解题1二、理解题二三、理解题三四、理解题四五、理解题五六、理解题六 一、理解题1 #include <stdio.h>int main(void) {int (*p)[5] NULL; // 定义一个指向 拥有5个整型数据的数组…

【Java】JDBC+Servlet+JSP实现搜索数据和页面数据呈现

目录 1 .功能介绍 2. 实现流程 3. 项目环境 4. 相关代码 4.1 Maven配置 4.2 SQL语句 4.3 Java代码 4.4 HTML代码 4.5 JSP代码 5. 结果展示 &#xff08;原创文章&#xff0c;转载请注明出处&#xff09; 博主是计算机专业大学生&#xff0c;不定期更新原创优质文章&…