MLLM | Mini-Gemini: 挖掘多模态视觉语言大模型的潜力

香港中文、SmartMore

论文标题:Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models

Code and models are available at https://github.com/dvlab-research/MiniGemini

一、问题提出

通过更高分辨率的图像增加视觉标记的数量可以丰富LLM中的视觉嵌入。然而,这种改进伴随着计算需求和相关成本的不断增加,特别是在处理多个图像时。此外,现有的数据质量、模型能力和应用范围仍然不足以加速训练和开发过程。这种情况引发了一个关键的问题:如何在学术环境中以可接受的成本推动 VLM 接近成熟的模型?

为了回答这个问题,从三个战略方面探讨了VLM的潜力,即高效高分辨率解决方案、高质量数据和扩展程序。

二、Mini-Gemini

1、Dual Vision Encoders

Mini-Gemini的框架在概念上:利用双视觉编码器来提供低分辨率的和高分辨率的视觉嵌入;提出patch信息挖掘以在高分辨率区域和低分辨率视觉query之间进行patch-level挖掘;LLM用于将文本与图像结合起来,同时进行理解和生成。

高分辨率图像、低分辨率图像(高分辨率双线性插值而来),然后双编码器并行处理成多网格视觉嵌入。对于LR,使用CLIP vit,这样,N个视觉块之间的长程关系就可以很好地保留下来,以便后续在LLM中进行交互。对于HR,采用基于 CNN 的编码器进行自适应且高效的 HR 图像处理。使用 LAION 预训练 ConvNeXt作为 HR 视觉编码器。因此,可以通过将不同卷积阶段的特征上采样并concate到1/4输入尺度来获得HR特征图。

2、Patch Info Mining

为了维持 LLM 中最终visual tokens的数量以提高效率,将低分辨率LR的visual embedding作为query,高分辨率HR作为Key和Value,旨在从 HR  visual embedding中检索相关视觉线索。Q 中的低分辨率块与 K 和 V 中相应的高分辨率子区域相关,包含 M^2 个像素级特征。因此,patch信息挖掘过程可以表述为:

其中 φ和 MLP 分别表示a projection layer和multi-layer perceptron。

如图 3a 所示,该公式封装了合成和细化视觉线索的过程,从而生成增强的视觉标记 Tv,用于后续的 LLM 处理。它确保每个query的挖掘仅限于 HR 具有 M^2 个特征的相应子区域,从而保持效率。这种设计允许在不扩展视觉标记数量的情况下提取 HR 细节,保持细节丰富度和计算可行性之间的平衡。

此外,还支持视觉令牌扩展。如图 3b 所示,可以将视觉标记扩展到 5N 以捕获更多细节。这是通过将原始图像与其 2× 放大的对应图像合并来实现的,从而产生批量输入 XL∈R5×H′×W′×3。可以使用 LR 视觉编码器得到编码后的视觉嵌入 X′ L ∈ R5×N×C,如第 3.1 节所述。

3、Text and Image Generation

通过挖掘的视觉标记 Tv 和输入文本标记 Tt ,将它们拼接起来作为 LLM 的输入以进行自回归生成。Mini-Gemini 支持纯文本和文本图像生成作为输入和输出,即任意到任意的推理。Mini-Gemini 将用户指令转化为高质量的prompt,从而在潜在扩散模型中生成上下文相关的图像。这种方法反映在后续的高质量图像生成框架中,例如DALLE 3和SORA,它们利用VLM的生成和理解能力来获取用于生成任务的更高质量的文本条件。

Text-image Instructions.

为了更好的跨模态对齐和指令微调,从公开来源收集高质量的数据集。特别是,对于跨模态对齐,利用来自 LLaVA 过滤的 CC3M 数据集的 558K 图像标题对和来自 ALLaVA 数据集的 695K 采样的 GPT-4V response caption。至于指令微调,从 LLaVA数据集中采样了 643K 单轮和多轮对话(不包括 21K TextCaps数据),从 ShareGPT4V中采样了 100K QA 对,从 ShareGPT4V中采样了 10K LAION-GPT-4V 字幕、来自 ALLaVA 数据集的 700K GPT-4V 响应指令对,以及来自 LIMA和 OpenAssistant2的 6K 纯文本多轮对话。为了增强 OCR 相关能力,进一步收集了 28K QA 对,其中包括 10K DocVQA、4K ChartQA、10K DVQA 和 4K AI2D数据。一般来说,图像理解大约有 1.5M 的指令相关对话。此外,还收集了 13K 对用于图像相关的生成。

Generation-related Instructions.

为支持图像生成,使用 GPT-4 Turbo 进一步构建了 13K 指令数据集。如图 4 所示,训练数据包含两个任务:(a)简单指令重述:采用 LAION-GPT-4V 中的 8K 描述性图像标题,让 GPT-4 逆向推断相应用户的短输入和稳定扩散 (SD) 域中的目标标题。 (b) 上下文提示生成:基于 LIMA和 OpenAssistant2中的一些高质量的真实对话上下文,生成提示,生成适合对话上下文的图像,总共带来 5K 条指令。对于这两种数据,在每次对 GPT-4 的query中,从 GigaSheet 中随机采样 5 个高质量 SD 文本到图像提示作为上下文示例,以获得生成的目标提示。格式化数据以使用 <GEN> 作为触发器来启动生成过程并将目标标题包装在 <h>...</h> 内。文本生成后,Mini-Gemini 提取目标标题并利用 SDXL生成相应的图像。

三、实验

1、Implementation Details.

为高效训练,固定两个视觉编码器,并优化各个阶段的Patch Info Mining的projector。同时,仅在指令调优阶段对LLM进行优化。使用 AdamW 优化器和余弦学习计划优化 1 epoch 的所有模型。在大多数情况下,模态对齐和指令调整的初始学习率分别设置为 1e−3 和 2e−5,Mixtral-8×7B 和 Hermes-2-Yi-34B 的调整率为 1e−5确保指令调优稳定。该框架涉及在标准机器配置的 8 个 A800 GPU 上进行训练。对于最大的模型 Hermes-2-Yi-34B,利用 4 台机器,使用 DeepSpeed Zero3 策略在 2 天内完成优化。对于HD版本,由于LLM视觉令牌的扩展,总成本增加到大约4天。

对于模型优化,构建高质量数据以进行跨模态理解和生成。它主要包括用于模态对齐的 1.2M 标题对和用于指令调整的 1.5M 单轮或多轮对话。

2、Main Results

Normal Resolution

在多种设置(包括正常分辨率和高分辨率)下与之前的领先方法进行了比较,并且还考虑了私有模型。在正常分辨率下,Mini-Gemini 在各种LLM中始终优于现有模型。

High Resolution

为验证扩展视觉标记的框架,对表 1 中 LR 视觉编码器的输入大小为 672,HR 视觉编码器的输入大小为 1536 进行实验。尽管分辨率提高了,LLM 处理的视觉标记的有效数量仍然与 LR 输入大小 672 保持一致,确保了计算效率。这种方法的好处在注重细节的任务中尤其明显。

3、Component-wise Analysis

Patch Info Mining

通过集成 ConvNeXt-L 作为 HR 图像的视觉编码器获得了显着的收益。

Vision Encoder

与默认的ConvNeXt-L相比,添加了两个编码器进行对比试验,即ConvNeXt-B和ConvNeXt-XXL。借助基本的 ConvNeXt-B,模型在 TextVQA 和 MM-Vet中表现更好。然而,ConvNeXt-L 编码器始终提供峰值结果,尤其是在 MME 和 MM-Vet 数据集中,表明在处理详细视觉信息方面具有卓越的平衡。可以从表中得出结论,HR 图像的较大视觉编码器对候选质量的贡献更大,但模型会与 ConvNeXt-XXL 等过大的编码器收敛。因此,考虑到有效性和计算效率之间的平衡,选择ConvNeXt-L作为默认的HR视觉编码器。这一决定是基于其提供高质量视觉信息挖掘的能力,同时保持合理的计算需求,跨基准的比较性能证明了这一点。

High-quality Data

高质量的数据对于提升LLM和VLM能力的重要性怎么强调都不为过。

Visual Token Extension

如图 3b 所示,扩展的视觉标记,从而在不同的输入分辨率下推广其实用性。我们在表 3 中验证了有效性。当增加 LR 和 HR 输入分辨率时,该模型在所有基准测试中都取得了显着的增益。分辨率的提高显着减少了幻视,从而使图像理解更加准确和可靠。一般来说,随着视觉令牌数量的增加,Mini-Gemini 可以扩展到更好的能力。

4、Qualitative Results

Visual Understanding

为确定 Mini-Gemini 在现实环境中的视觉理解能力,将其应用于图 5 中的各种理解和推理任务。得益于补丁信息挖掘和高质量的数据,Mini-Gemini 可以很好地解决多种复杂情况。

Image Generation

对Mini-Gemini的生成能力进行了全面评估。与最近的研究(例如 AnyGPT和 ChatIllusion)相比,更强的多模态理解能力使模型能够生成与给定指令更好地对齐的文本到图像标题,从而产生更适合上下文的图像文本答案。如图  6 所示,它能够熟练地基于多模式人类指令和纯文本训练数据生成高质量内容。这一能力凸显了 Mini-Gemini 强大的图像文本对齐和语义解释能力,这些能力在推理阶段有效发挥作用。利用LLM强大的推理能力,可以在单轮或多轮对话中产生合理的图文输出。

四、Conclusion and Discussion

仍有很大的潜力需要进一步挖掘。对于视觉理解来说,计数能力和复杂的视觉推理能力还远远不能令人满意。这可能是由于缺乏相应的训练数据,特别是在预训练阶段。同时,对于基于推理的生成,在这项工作中使用文本来桥接 VLM 和扩散模型,因为没有发现基于嵌入的方法有明显的增益。将尝试寻找一种更先进的方式来进行视觉理解、推理和生成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/2404.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Power BI 如何创建页面导航器?(添加目录按钮/切换页面按钮)

Power BI 中页导航是什么&#xff1f; 在Power BI中&#xff0c;页导航&#xff08;Page Navigation&#xff09;是指在报告中创建多个页面&#xff08;页&#xff09;&#xff0c;然后允许用户在这些页面之间进行导航的功能。 如下图所示&#xff0c;页导航的选项和报告中的…

嵌入式学习59-ARM8(中断,ADC,内核定时器和传感器)

什么是中断顶半部和底半部 &#xff1f; &#xff08;部分记忆&#xff09;背 上半部&#xff1a; …

Atlas Vector Search:借助语义搜索和 AI 针对任何类型的数据构建智能应用

Atlas Vector Search已正式上线&#xff01; Vector Search&#xff08;向量搜索&#xff09;现在支持生产工作负载&#xff0c;开发者可以继续构建由语义搜索和生成式人工智能驱动的智能应用&#xff0c;同时通过 Search Node&#xff08;搜索节点&#xff09;优化资源消耗并…

SpringCloud系列(12)--服务提供者(Service Provider)集群搭建

前言&#xff1a;在上一章节中我们成功把微服务注册进了Eureka集群&#xff0c;但这还不够&#xff0c;虽然注册服务中心Eureka已经是服务配置了&#xff0c;但服务提供者目前只有一个&#xff0c;如果服务提供者宕机了或者流量过大&#xff0c;都会影响到用户即服务使用者的使…

Oracle数据库的简单使用

Oracle简单使用 一、数据库的介绍二、Oracle介绍账号管理Oracle的安装Oracle服务的作用OracleRemExecService服务创建数据库 常用命令 三、SQL语言SQL分类实用的数据表添加注释数据操纵语言&#xff08;DML&#xff09;查询语句&#xff08;SELECT&#xff09;wherelikedistinc…

pycharm集成github项目,拉取项目并进行代码管理

首先你要有一个github项目&#xff0c;然后找到一个想要拉取github项目的本地路径&#xff0c;打开git命令行&#xff0c;执行git clone http…路径&#xff0c;可能会需要你输入git的用户名和密码&#xff1b;用pycharm打开该项目&#xff1b;添加python解释器&#xff0c;我用…

YOLOv8改进项目汇总-超全改进-ultralyticsPro介绍:订阅了《芒果YOLOv8原创改进专栏》的读者免费赠送,包括很多稀有改进

&#x1f525;&#x1f525;&#x1f525;专注于YOLOv8改进&#xff0c;NEW - YOLOv8 &#x1f680; in PyTorch >, Support to improve Backbone, Neck, Head, Loss, IoU, LA, NMS and other modules&#x1f680; Makes YOLOv8 improvements easy again 芒果出品 YOLOv8…

上汽大通:依托电子签网络,升级产业供应链协同

2023年12月&#xff0c;法大大发布了中国首部《汽车行业合同数智化白皮书》&#xff08;点击阅读及下载&#xff1a;中国首部&#xff01;《汽车行业合同数智化白皮书》重磅发布 | 附下载&#xff09;。该白皮书中基于法大大自身参与汽车行业合同数智化建设的实践和思考&#x…

防反接、防过压、缓启动电路相关

一、防反接电路 电源正确接入时 电流从 VIN 端流向负载&#xff0c;经由 Q3(NMOS) 通向地&#xff08;GND&#xff09;。在上电瞬间&#xff0c;由于 MOS 管的体二极管效应&#xff0c;地回路通过体二极管接通。接下来&#xff0c;由于 Vgs(门源电压)大于 Vgsth(门限电压)&…

【python】python新闻文本数据统计和聚类 (源码+文本)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

Bentley二次开发教程02-开发环境搭建

1 Bentley 平台介绍 图 1 Bentley 平台介绍 Bentley 软件大致可分为四大平台&#xff0c;分别为用于设计的 Microstation 平台&#xff0c;用于协同的 ProjectWise 平台&#xff0c;用于对资产进行全生命周期管理的 AssetWise 平台和数据互联互通的 数字孪生平台 iTwin。 1.1 …

Linux文件系统与日志

一、inode和block 文件数据包括元信息与实际数据&#xff0c;文件存储在硬盘上&#xff0c;硬盘最小存储单位是扇区&#xff0c;每个扇区存储512字节 1.block(块)&#xff1a;文件系统中用于存储文件实际数据的最小单位&#xff0c;由文件系统进行分配和管理&#xff0c;并通…

【电子通识】什么是8D分析法?8D步骤及用法?

在问题分析时往往会听到8D报告这样的词汇。如在电源专题【电源专题】案例:电源芯片厂家怎么判断电源芯片端口是否损坏中我们使用的图片就来源于电源芯片厂家的8D报告。 什么是8D分析法? 8D问题分析由美国国防部于1974年创立,当时用于军用物资采购保障。目前在汽车产业、组装…

MapReduce案例-电影网站数据统计分析

本文适合大数据初学者学习MapReduce统计分析业务问题的步骤和基础的MapReduce编程方法&#xff0c;初步掌握Hadoop对计算任务的管理。 本文末尾有全部数据集和完整代码连接。 1.准备工作 安装Hadoop:Hadoop 3.3.2 离线安装-CSDN博客 按照好Hadoop之后要检查一下datanode运行情况…

在控制台实现贪吃蛇

在控制台实现贪吃蛇 前备知识Win32APICOORD这个结构体的声明如下&#xff1a;GetStdHandle 函数GetConsoleCursorInfo 函数SetConsoleCursorInfo 函数 SetConsoleCursorPosition 函数getAsyncKeyState 函数 控制台窗口的大小以及字符打印介绍控制台中的坐标宽字符及本地化介绍s…

SRS服务接入华为云CDN

CDN简介: CDN的全称是Content Delivery Network&#xff0c;即内容分发网络。其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节&#xff0c;使内容传输得更快、更稳定。通过在网络各处放置节点服务器所构成的在现有的互联网基础之上的一层智能虚拟网…

SSH远程连接docker容器-Linux-SSH -L 打隧道

问题&#xff1a;在物理机上用podman创建了一个容器&#xff0c;想SSH直接远程连接docker容器 解决方式&#xff1a; 步骤1: 在本地terminal输入以下命令&#xff1a; ssh -L 容器端口号:localhost:容器端口号 物理机用户名物理机ip -p 物理机端口号 即可&#xff0c;可新打…

centos7+mysql57安装以及初始化

1、下载安装yum官方mysql源&#xff1a; http://repo.mysql.com/ ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/061472a86e9e4548b76d4603d4614568.png rpm -ivh mysql57-community-release-el7.rpm2、yum安装mysql服务 yum install -y mysql-community-server…

423 世界读书日 和京东零售技术人一起读好书

我们正处于一个复杂、变化的世界&#xff0c;想要更好地理解、适应它&#xff0c;读书可能是最方便的方式之一。 4 月 23 日世界读书日&#xff0c;我们整理了 10 位零售技术人的书籍推荐给大家&#xff0c;欢迎大家一起来共读好书。愿大家在忙碌工作之余&#xff0c;都能够持…

从0到1实现RPC | 接入Apollo配置中心

一、代码实现 添加依赖 添加apollo客户端的依赖和spring配置相关依赖 添加监听器 通过实现ApplicationContextAware接口&#xff0c;获取Spring上下文。 使用ApolloConfigChangeListener注解监听命名空间rpc-demo-provider.yaml和默认的application.properties。 监听逻辑…