Python 知识图谱补全,Knowledge Graph Completion,基于大模型的知识图谱补全,基于LLMs的KGC任务

今天讲一篇文章《Exploring Large Language Models for Knowledge Graph Completion》 ,这篇文章主题:基于大模型做知识图谱补全

1.文章主要思想:

本章描述知识图谱补全中的三个任务:三元组分类、关系预测和实体(链接)预测,以及如何将它们转换为简单的提示问题,以供LLM完成任务。

三元组分类。 给定一个三元组(h, r, t),任务是将其分类为正确或不正确。例如,给定三元组< 史蒂夫·乔布斯,成立,苹果公司 >,任务是将其分类为正确的。答案会是“这是真的吗:史蒂夫·乔布斯创立了苹果公司?”LLM的理想输出是“Yes, this is true”。

关系预测。 给定一个头实体和一个尾实体,任务是预测它们之间的关系。例如,给定头
部实体“Steve Jobs”和尾部实体“Apple Inc.”,任务是预测它们的关系是“建立的”。提示的形式是“史蒂夫·乔布斯和苹果公司之间是什么关系?”请从以下选项中选择你的答案:出生在|创立|是|的公民...... |为。”人们期望的回答是:“史蒂夫·乔布斯创立了苹果公司。”

实体(链接)预测给定头部实体和关系,任务是预测与头部实体相关的尾部实体给定尾部实体和关系,任务是预测头部实体。例如,给定头部实体“Steve Jobs”和关系“founded”,任务是预测尾部实体“Apple Inc.”。如果问尾部实体,提示的形式是“史蒂夫·乔布斯创立了”,如果问头部实体,提示的形式是“什么/谁/何时/何地/为什么创立了苹果公司?”理想的回答是“史蒂夫·乔布斯创立了苹果公司。”部实体“Steve Jobs”和尾部实体“Apple Inc.”,任务是预测它们的关系是“建立的”。提示的形式是“什么/谁/何时/何地/为什么创立了苹果公司?”理想的回答是“史蒂夫·乔布斯创立了苹果公司。”

2 本文方法 

采用模型:KG-ChatGLM-6BKG-LLaMA (7B13B) 

1. p-tuning v2微调ChatGLM-6B

2. 用LoRA微调LLaMA-7B和13B

3 实验设置

 

 

4 实验结果

 5. 代码实战

GitHub - yao8839836/kg-llm: Exploring large language models for knowledge graph completion

 installing requirement packages

pip install -r requirements_chatglm.txt

1.DATA

(1) The four KGs we used as well as entity and relation descriptions are in ./data.

(2) The input files for LLMs are also in each folder of ./data, see train_instructions_llama.json and train_instructions_glm.json as examples.

(3) The output files of our models are also in each folder of ./data, see pred_instructions_llama13b.csv and generated_predictions.txt (from ChatGLM-6B) as examples.

2. LLaMA fine-tuning and inference examples

Firstly, put LLaMA model files under models/LLaMA-HF/ and ChatGLM-6b model files under models/chatglm-6b/.

In our experiments, we utilized an A100 GPU for all LLaMA models and a V100 GPU for all ChatGLM models.

python lora_finetune_wn11.py
python lora_finetune_yago_rel.py
python lora_infer_wn11.py
python lora_infer_yago_rel.py

3. ChatGLM fine-tuning and inference examples 

python ptuning_main.py --do_train --train_file data/YAGO3-10/train_instructions_glm_rel.json --validation_file data/YAGO3-10/test_instructions_glm_rel.json --prompt_column prompt --response_column response --overwrite_cache --model_name_or_path models/chatglm-6b --output_dir models/yago-rel-chatglm-6b --overwrite_output_dir --max_source_length 230 --max_target_length 20 --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --gradient_accumulation_steps 16 --predict_with_generate --max_steps 80000 --logging_steps 300 --save_steps 10000 --learning_rate 1e-2 --pre_seq_len 8 --quantization_bit 4 

python ptuning_main.py --do_predict --validation_file data/YAGO3-10/test_instructions_glm_rel.json --test_file data/YAGO3-10/test_instructions_glm_rel.json --overwrite_cache --prompt_column prompt --response_column response --model_name_or_path models/yago-rel-chatglm-6b/checkpoint-10000 --output_dir /data/YAGO3-10/glm_r_result --overwrite_output_dir --max_source_length 230 --max_target_length 20 --per_device_eval_batch_size 1 --predict_with_generate --pre_seq_len 8 --quantization_bit 4

 4. Raw LLaMA inference

python test_llama_fb13.py 

最后,感谢作者的优秀文章!大家加油!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/23856.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++初阶学习第十一弹——探索STL奥秘(六)——深度刨析list的用法和核心点

前言&#xff1a; 在前面&#xff0c;我们已经学习了STL中的string和vector&#xff0c;现在就来讲解STL中的最后一个部分——list的使用及其相关知识点&#xff0c;先说明一点&#xff0c;因为我们之前已经讲过了string和vector的接口函数等用法&#xff0c;list的这些用法与它…

python_将二维列表转换成HTML格式_邮件相关

python_将二维列表转换成HTML_邮件相关 data[["理想","2"],["理想2","3"]]def list_to_html_table(data):"""将二维列表转换为HTML表格格式的字符串。参数:data -- 二维列表&#xff0c;表示表格的数据。返回:一个字符…

美财长耶伦警告:金融行业广泛应用AI带来潜在“重大风险”

内容概述 耶伦承认&#xff0c;人工智能用在金融领域可降低交易成本、提高效率、检测欺诈和增加服务可及性&#xff0c;但也伴随风险。AI模型的复杂性和不透明度、供应商高度集中、产生数据缺陷或偏见等AI相关风险&#xff0c;已成为美国金融监管机构的首要议题。 6月6日周四&…

2024年全国青少信息素养大赛图形化编程挑战赛集训第一天编程题分享

大家如果不想阅读前边的比赛内容介绍,可以直接跳过:拉到底部看集训第一天题目 (一)比赛内容: 【小学低年级组】 1、图形化编程软件的使用:熟悉图形化编程软件中舞台区、角色列表区、功能区、脚本编 -3- 辑区的功能及使用。 2、基础功能模块的使用: a.运动模块:角…

Spring Boot 开发 -- 集成 Prometheus 进行高效监控

引言 随着微服务架构的流行&#xff0c;对服务的监控和管理变得尤为重要。Prometheus作为一个开源的监控和告警工具&#xff0c;以其强大的数据采集、存储和查询能力&#xff0c;受到了众多开发者的青睐。Spring Boot作为Java领域快速构建微服务的框架&#xff0c;与Prometheu…

单轮对话和多轮对话

参考&#xff1a;数据集对应关系说明 - 千帆大模型平台 | 百度智能云文档 (baidu.com) 什么是单轮对话 单轮对话和多轮对话是两种不同的对话形式&#xff0c;它们分别指的是在一次对话中只涉及一个问题和对应的回答&#xff0c;以及在一次对话中涉及多个问题和对应的回答。 …

暑假打工兼职首选——千行赏金

考虑暑假打工兼职该怎么选&#xff1f;加入千行赏金这样的平台确实是一个值得考虑的选择。以下是一些关于此问题的分析&#xff1a; 首先&#xff0c;暑假打工兼职的好处是显而易见的。它不仅可以为学生提供一定的经济收入&#xff0c;减轻家庭的经济负担&#xff0c;还可以帮…

【教程】从0开始搭建大语言模型:文本预处理

从0开始搭建大语言模型&#xff1a;文本预处理 参考仓库&#xff1a;LLMs-from-scratch 理解Word embedding 深度神经网络模型&#xff0c;包括LLM&#xff0c;不能直接处理原始文本&#xff0c;因此需要一种方法将它转换为连续值的向量&#xff0c;也就是embedding。如下图…

1782java英语陪学记词系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java英语陪学记词系统 是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助采用了java设计&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统采用web模式&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&…

AI大底座核心平台:百度百舸AI异构计算平台(AI IaaS)与AI中台(AI PaaS)

AI大底座正是整合了以上端到端全要素技术能力&#xff0c;将基础架构IaaS与应用平台PaaS能力深度融合&#xff0c;面向企业和产业AI生 产与应用的全生命周期提供完整解决方案。 百舸AI异构计算平台是AI IaaS层的核心平台&#xff0c;包括AI计算、AI存储、AI加速、AI容器四层套件…

shell(一)

shell 既是脚本语言又是应用程序 查看自己linux系统的默认解析&#xff1a;echo $SHELL 创建第一个shell 文件 touch 01.sh编辑 vi 01.sh01.sh 文件内容 #!/bin/bash echo felicia保存 按Esc 然后输入:wq 定义以开头&#xff1a;#!/bin/bash #!用来声明脚本由什么shell解释…

idea maven 执行 控制台乱码

这是没加出现的问题 上方案

【HTTP系列】TCP/IP协议

文章目录 一、是什么二、划分五层体系应用层传输层网络层数据链路层物理层 四层体系 三、总结参考文献 一、是什么 TCP/IP&#xff0c;传输控制协议/网际协议&#xff0c;是指能够在多个不同网络间实现信息传输的协议簇 TCP&#xff08;传输控制协议&#xff09; 一种面向连…

【YOLOv5/v7改进系列】替换上采样层为Dysample

一、导言 介绍了一种名为DySample的超轻量级且高效的动态上采样器。DySample旨在解决当前动态上采样技术如CARAFE、FADE和SAPA虽然性能提升显著但带来大量计算负担的问题&#xff0c;这些问题主要来源于动态卷积的时间消耗以及用于生成动态核的额外子网络。此外&#xff0c;FA…

STC90C51驱动LCD1602、LCD12864、OLED

主控芯片&#xff08;STC90C516RDPG5151028&#xff09;介绍 ROM64K,RAM1280字节&#xff0c;40Pin&#xff0c;3个定时器&#xff0c;1个串口&#xff0c;8个中断源&#xff08;分别是&#xff1a;外部中断0(INTO)、外部中断 1(INT1)、外部中断 2(INT2)、外部中断 3(INT3)、定…

pytest构建和测试FastAPI CURD API

文章目录 概述目标FASTAPI 介绍CRUD API 项目设置freezepipreqs 代码介绍run APIpytest测试F&Q1.执行uvicorn app.main:app --host localhost --port 8000 --reload 报错 zsh: /usr/local/bin/uvicorn: bad interpreter2.生成requirement.txt时&#xff0c;pip3 list pipre…

Frida 学习之 messages

目录 一、消息发送 二、环境准备 三、从目标进程中发消息 四、在目标进程中接收消息 五、在目标进程中以阻塞方式接收消息 官方链接&#xff1a;Messages | Frida • A world-class dynamic instrumentation toolkit 参考链接&#xff1a;Frida官方手册 - 消息发送_frida…

C语言 RTC时间(年月日时分秒) 和 时间戳 互相转换

一、介绍 在C语言中&#xff0c;将年月日时分秒转换为时间戳&#xff08;Unix时间戳&#xff0c;即从1970年1月1日00:00:00 UTC到现在的秒数&#xff09;通常需要使用struct tm结构体和timegm或mktime函数。&#xff08;注意&#xff0c;mktime函数假设struct tm是本地时间&…

Python语法详解module4(函数)

目录 一、函数基础1. 函数的概念和作用2. 函数的定义和调用3. 参数传递 二、返回值和文档字符串返回值的概念和用法1. 返回值的概念2. 使用 return 关键字返回值&#xff1a;3. 多个返回值的情况&#xff1a; 文档字符串&#xff08;docstring&#xff09;的作用和使用方法1. 文…

大坝安全监测自动化技术的规范化设计准则

大坝安全监测自动化技术的规范化设计准则 一、施工阶段自动化系统设计要点 在施工阶段&#xff0c;大坝安全监测自动化系统的设计应当涵盖以下几个核心内容&#xff1a; 监测仪器的布局规划及详细的施工图纸设计。 配套土建项目以及防雷设施的施工设计规划。 明确施工过程中的技…