用 OpenCV 实现图像中水平线检测与校正

前言

在本文中,我们将探讨如何使用 Python 和 OpenCV 库来检测图像中的水平线,并对图像进行旋转校正以使这些线条水平。这种技术可广泛应用于文档扫描、建筑摄影校正以及机器视觉中的各种场景。

环境准备

首先,确保您的环境中安装了 OpenCV 库。如果还没有安装,可以通过以下命令安装,要注意尽管代码里我们都是使用的cv2,但是安装包要选opencv-python:

pip install opencv-python

试验效果

原始图像

在这里插入图片描述

找出水平线

在这里插入图片描述

基于统计角度旋转

在这里插入图片描述

步骤概述

  1. 图像加载与预处理:加载图像,转换为灰度图,然后使用 Canny 算法检测边缘。
  2. 线条检测:应用霍夫变换来识别图像中的线条。
  3. 水平线条筛选:过滤出接近水平的线条。
  4. 线条可视化:在图像上绘制检测到的水平线。
  5. 计算需要的旋转角度:计算线条的加权平均角度,以确定图像应旋转的角度。
  6. 图像旋转校正:根据计算出的角度旋转图像,以校正线条至水平。

详细实现

  1. 图像加载与预处理
    加载图像并将其转换为灰度图,这是大多数图像处理任务的常见做法,因为它简化了接下来的处理步骤。
image = cv2.imread('test.png') # 读取图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 转换成灰度图像
  1. 边缘检测
    使用 Canny 算法进行边缘检测,这是一种广泛使用的边缘检测算法,因为它有效地识别图像中的线条和边缘。
edges = cv2.Canny(gray, 50, 150, apertureSize=3)

参数详解
gray:这是输入图像,Canny 边缘检测通常在灰度图像上进行,因为边缘检测是基于图像亮度变化的。
50:第一个阈值用于边缘检测的低阈值。这是用于Canny算法中的双阈值过程的较低边界。低于此阈值的像素点不会被视为边缘。
150:第二个阈值用于边缘检测的高阈值。这是用于Canny算法中的双阈值过程的较高边界。高于此阈值的像素点将被视为边缘的强候选者。
apertureSize=3:这是用于内部边缘检测的Sobel算子的大小。apertureSize定义了计算图像梯度所用的Sobel核的大小。常用的尺寸是3,但也可以使用更大的尺寸如5或7,这在处理较大的边缘时可以提供更平滑的结果。

  1. 线条检测与筛选
    通过霍夫变换检测线条,然后筛选出接近水平的线条。我们定义了一个函数 filter_horizontal_lines,它计算每条线的角度,并筛选出角度小于设定阈值的线条。
	def filter_horizontal_lines(lines, angle_threshold=10):horizontal_lines = []if lines is not None:for line in lines:x1, y1, x2, y2 = line[0]angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))if abs(angle) < angle_threshold:horizontal_lines.append(line)return horizontal_lineslines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength=100, maxLineGap=10)horizontal_lines = filter_horizontal_lines(lines)

HoughLinesP参数说明

# HoughLinesP使用概率霍夫变换检测图像中的线段 (注意HoughLines和HoughLinesP是两个函数方法)
lines = cv2.HoughLinesP(edges,             # 边缘图像,通常是Canny边缘检测的输出1,                 # rho - 累加器的距离精度,以像素为单位np.pi / 180,       # theta - 累加器的角度精度,以弧度为单位100,               # threshold - 累加器的阈值,仅返回大于此阈值的线段minLineLength=100, # minLineLength - 线段的最小长度maxLineGap=10      # maxLineGap - 同一线条上允许的最大间隙
)
  1. 计算旋转角度
    我们定义了一个函数 calculate_average_angle,它计算所有检测到的水平线条的加权平均角度。这个角度将用于图像旋转校正。注意这里的np.average(angles, weights=lengths)使用了加权,也就是这个函数会基于找到的线段长度,进行角度的加权平均,如果你只是单纯的关注线段的所有角度,可以删掉weights这个参数。
def calculate_average_angle(lines):"""计算线条的加权平均角度。参数:lines (list): 包含线条的列表,每条线条由两个点的坐标表示,格式为 [x1, y1, x2, y2]。返回:float: 线条的加权平均角度,以度为单位。如果没有符合条件的线条,则返回 0。"""angles = []lengths = []if lines:for line in lines:x1, y1, x2, y2 = line[0]# 计算线条的长度length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)# 计算线条的角度,以度为单位angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))# 角度校正,确保处理的角度是接近水平的if abs(angle) > 90:angle -= 180# 只考虑接近水平的线条if abs(angle) < 20:  # 可调整此阈值以更好地适应具体情况angles.append(angle)lengths.append(length)# 计算加权平均角度if lengths:average_angle = np.average(angles, weights=lengths)else:average_angle = 0return average_angleaverage_angle = calculate_average_angle(horizontal_lines) # 调用函数完成平均角度计算
  1. 图像旋转校正
    最后,我们基于返回的角度,旋转图像,使线条尽可能水平。我们使用 OpenCV 提供的仿射变换函数 cv2.warpAffine 来完成这个任务。
def rotate_image(image, angle):(h, w) = image.shape[:2]center = (w // 2, h // 2)M = cv2.getRotationMatrix2D(center, angle, 1.0)rotated = cv2.warpAffine(image, M, (w, h))return rotatedrotated_image = rotate_image(image, average_angle)
cv2.imwrite('rotated_image.jpg', rotated_image)

代码纯享版

import cv2
import numpy as npdef filter_horizontal_lines(lines, angle_threshold=10):horizontal_lines = []if lines is not None:for line in lines:x1, y1, x2, y2 = line[0]angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))if abs(angle) < angle_threshold:horizontal_lines.append(line)return horizontal_lines
#
#
def calculate_average_angle(lines):angles = []lengths = []if lines:for line in lines:x1, y1, x2, y2 = line[0]length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))# 角度校正,确保处理的角度是接近水平的if abs(angle) > 90:angle -= 180# 只考虑接近水平的线条if abs(angle) < 20:  # 可调整此阈值以更好地适应具体情况angles.append(angle)lengths.append(length)# 计算加权平均角度if lengths:average_angle = np.average(angles, weights=lengths)else:average_angle = 0return average_angle# def calculate_average_angle(lines):
#     angles = []
#     lengths = []
#     filtered_lines = []
# 
#     if lines:
#         # 计算每条线的长度和角度
#         for line in lines:
#             x1, y1, x2, y2 = line[0]
#             length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
#             angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))
# 
#             # 角度校正,确保处理的角度是接近水平的
#             if abs(angle) > 90:
#                 angle -= 180
#             if abs(angle) < 20:  # 只考虑接近水平的线条
#                 filtered_lines.append((angle, length))
# 
#         # 按长度排序,并取最长的前9条线
#         filtered_lines.sort(key=lambda x: x[1], reverse=True)
#         top_lines = filtered_lines[:9]
# 
#         # 分割角度和长度
#         angles, lengths = zip(*top_lines) if top_lines else ([], [])
# 
#     # 计算加权平均角度
#     if lengths:
#         average_angle = np.average(angles, weights=lengths)
#     else:
#         average_angle = 0
# 
#     return average_angle# 使用此函数时,确保传入的lines是过滤后只包含接近水平的线条def draw_lines(image, lines):for line in lines:x1, y1, x2, y2 = line[0]cv2.line(image, (x1, y1), (x2, y2), (0, 255, 0), 3)return imagedef rotate_image(image, angle):(h, w) = image.shape[:2]center = (w // 2, h // 2)M = cv2.getRotationMatrix2D(center, angle, 1.0)rotated = cv2.warpAffine(image, M, (w, h))return rotated# 加载图像
image = cv2.imread('test.png')# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)# 使用霍夫变换检测线条
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)# 过滤出横向线条
horizontal_lines = filter_horizontal_lines(lines)# 在原图上绘制检测到的横向线条
image_with_lines = draw_lines(np.copy(image), horizontal_lines)# 保存带线条的图像
cv2.imwrite('image_with_horizontal_lines.jpg', image_with_lines)# 计算线条的加权平均角度
average_angle = calculate_average_angle(horizontal_lines)
print("计算得到的加权平均角度为:", average_angle)# 旋转整个图像使线条水平
rotated_image = rotate_image(image, average_angle)  # 根据角度旋转 正角度表示逆时针旋转,而负角度表示顺时针旋转# 保存旋转后的图像
cv2.imwrite('rotated_image.jpg', rotated_image)print("旋转后的图像已保存为 'rotated_image.jpg'")

结论

通过上述步骤,我们能够自动检测并校正图像中的水平线,这对于许多自动化处理任务来说是非常有用的。本文介绍的方法仅依赖于 OpenCV,易于实现且效果显著。了解相关函数,通过适当调整参数,该技术可以适应不同的应用需求和条件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/23810.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【RAG提升技巧】查询改写HyDE

简介 提高 RAG 推理能力的一个好方法是添加查询理解层 ——在实际查询向量存储之前添加查询转换。以下是四种不同的查询转换&#xff1a; 路由&#xff1a;保留初始查询&#xff0c;同时查明其所属的适当工具子集。然后&#xff0c;将这些工具指定为合适的选项。查询重写&…

随身WIFI修改MAC(bssid)并接收短信

将SIM卡插入随身WiFi卡槽 将随身WIFI插入电脑 打开 http://ufi.icewifi.com &#xff0c;输入设备IMEI &#xff08;或直接扫描设备包装盒上的二维码&#xff09; 点击“确认” 登录到设备主页&#xff08;网址可收藏保存&#xff09; 点击“WIFI配置”按钮&#xff0c;输入想…

C#——枚举类型详情

枚举类型 枚举类型&#xff08;也可以称为“枚举器”&#xff09;由一组具有独立标识符&#xff08;名称&#xff09;的整数类型常量构成&#xff0c;在 C# 中枚举类型不仅可以在类或结构体的内部声明&#xff0c;也可以在类或结构体的外部声明&#xff0c;默认情况下枚举类型…

【Python报错】已解决AttributeError: Nonetype Object Has NoAttribute Group

解决Python报错&#xff1a;AttributeError: ‘list’ object has no attribute ‘get’ 在Python中&#xff0c;AttributeError通常表示你试图访问的对象没有你请求的属性或方法。如果你遇到了AttributeError: list object has no attribute get的错误&#xff0c;这通常意味着…

【NoSQL数据库】Redis——哨兵模式

Redis——哨兵模式 Redis哨兵 Redis——哨兵模式1.什么是哨兵机制&#xff08;Redis Sentinel&#xff09;1.1 哨兵的作用 2.哨兵的运行机制3.故障处理redis常见问题汇总1、redis缓存击穿是什么&#xff1f;如何解决&#xff1f;2、redis缓存穿透是什么&#xff1f;如何解决&am…

如何查询公网IP?

在互联网中&#xff0c;每个设备都有一个唯一的公网IP地址&#xff0c;用于标识设备在全球范围内的位置。查询公网IP是一个常见的需求&#xff0c;无论是用于远程访问、网络配置还是其他目的&#xff0c;了解自己的公网IP地址都是很有必要的。本文将介绍几种常见的方法来查询公…

HQChart使用教程100-自定义Y轴分段背景色

HQChart使用教程100-自定义Y轴分段背景色 效果图步骤1. 注册Y轴自定义刻度创建事件2. 配置Y轴背景色eventdataobj示例 交流QQ群HQChart代码地址 效果图 步骤 1. 注册Y轴自定义刻度创建事件 事件IDSCHART_EVENT_ID.ON_CREATE_CUSTOM_Y_COORDINATE, 如何注册事件详见教程 HQCh…

代码审计(1):CVE-2022-4957分析及复现

0x00漏洞描述&#xff1a; ѕрееdtеѕt iѕ а vеrу liɡhtԝеiɡ&#xff48;t nеtԝоrk ѕрееd tеѕtinɡ tооl imрlеmеntеd in Jаvаѕсriрt. Thеrе iѕ а Crоѕѕ-ѕitе Sсriрtinɡ vulnеrаbilitу in librеѕроndеd ѕрееdtеѕt…

[word] word2019中制表符的妙用 #媒体#笔记#知识分享

word2019中制表符的妙用 word2019表格功能是非常强大的&#xff0c;很多朋友都认为以前的制表符已经没有什么用途了&#xff0c;其实不然&#xff0c;在一切特殊的场合&#xff0c;word2019制表符还是非常有用的&#xff0c;下面就为大家介绍word2019中制表符的妙用。 步骤1、…

每日复盘-20240606

今日关注&#xff1a; 这几天市场环境不好&#xff0c;一直空仓。 排名标准: ------沪深A股 排名--------代码--------- 名称 六日涨幅最大: ------1--------301176--------- 逸豪新材 五日涨幅最大: ------1--------301176--------- 逸豪新材 四日涨幅最大: ------1--------…

信息系统项目管理师0146:输入(9项目范围管理—9.3规划范围管理—9.3.1输入)

点击查看专栏目录 文章目录 9.3 规划范围管理9.3.1 输入9.3 规划范围管理 规划范围管理是为了记录如何定义、确认和控制项目范围及产品范围,而创建范围管理计划的过程。本过程的主要作用是在整个项目期间对如何管理范围提供指南和方向。本过程仅开展一次或仅在项目的预定义点开…

Quartz持久化

1、为什么需要ouartz持久化 Quartz持久化即将定时任务保存在介质中&#xff0c;持久化目的是保证任务在发生异常后也不会丢失Quartz默认将定时任务存在内存(RAM]obstore)&#xff0c;优点是数据读取速度块&#xff0c;缺点是一旦异常发生&#xff0c;任务 数据就没有了Quartz还…

Objective-C之通过协议提供匿名对象

概述 通过协议提供匿名对象的设计模式&#xff0c;遵循了面向对象设计的多项重要原则&#xff1a; 接口隔离原则&#xff1a;通过定义细粒度的协议来避免实现庞大的接口。依赖倒置原则&#xff1a;高层模块依赖于抽象协议&#xff0c;而不是具体实现。里氏替换原则&#xff1…

台式机安装Windows 11和Ubuntu 22双系统引导问题

一、基本情况 1.1、硬件情况 电脑有2个NVMe固态硬盘&#xff0c;1个SATA固态硬盘&#xff0c;1个机械硬盘。其中一个NVMe固态硬盘是Windows系统盘&#xff0c;另一个NVMe固态为Windows软件和文件盘&#xff0c;SATA固态硬盘为Ubuntu专用&#xff0c;机械硬盘为数据备份盘。 …

Bandizip 专业版正版激活码 - 超好用文件解压缩工具

要说新电脑必装的软件&#xff0c;一定少不了解压缩工具。面对各式各样的压缩包&#xff0c;总要有一个速度快、稳定安全、功能多、支持格式广的工具才行。 好多用户推荐&#xff0c;用过都说好的 Win 端解压缩工具&#xff1a;Bandizip 值得你一试&#xff01; 无论是解压速度…

Redis Key过期监听配置

默认情况下在Windows系统中双击redis-server.exe用的是内置的配置文件 如果希望用这两个配置文件 redis.windows.conf&#xff1a;这是用于在Windows上运行Redis服务器的标准配置文件。可以使用这个文件通过命令行启动Redis服务器。redis.windows-service.conf&#xff1a;这是…

ESD防护SP3232E真+3.0V至+5.5V RS-232收发器

特征 采用3.0V至5.5V电源&#xff0c;符合真正的EIA/TIA-232-F标准 满载时最低 120Kbps 数据速率 1μA 低功耗关断&#xff0c;接收器处于活动状态 &#xff08;SP3222E&#xff09; 可与低至 2.7V 电源的 RS-232 互操作 增强的ESD规格&#xff1a; 15kV人体模型 15kV IEC1000…

java:一个简单的WebFlux的例子

【pom.xml】 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-webflux</artifactId><version>2.3.12.RELEASE</version> </dependency> <dependency><groupId>org.spr…

零基础打靶—Glasgow Smile靶场

一、打靶的主要五大步骤 1.确定目标&#xff1a;在所有的靶场中&#xff0c;确定目标就是使用nmap进行ip扫描&#xff0c;确定ip即为目标&#xff0c;其他实战中确定目标的方式包括nmap进行扫描&#xff0c;但不局限于这个nmap。 2.常见的信息收集&#xff1a;比如平常挖洞使用…

1.音视频开篇

目录 音视频播放的原理 音视频数据格式YUV YUV数据存储比 ​编辑 YUV空间格式 RGB与YUV转换 音视频播放的原理 主要分为&#xff1a;解协议->解封装->解码->音视频同步->播放。当然&#xff0c;如果是本地播放&#xff0c;没有解协议这一步骤。 采集数据其实…