地理加权回归GWR简介

地理加权回归GWR简介
一、定义:
地理加权回归(Geographically Weighted Regression,简称GWR)是一种空间数据分析方法,专门用于处理空间异质性(spatial heterogeneity)问题。以下是对GWR的详细简介:

GWR是一种空间分析技术,广泛应用于地理学及涉及空间模式分析的相关学科。

它通过建立空间范围内每个点处的局部回归方程,来探索研究对象在某一尺度下的空间变化及相关驱动因素,并可用于对未来结果的预测。

在空间分析中,观测数据通常按照给定的地理位置作为采样单元进行采样。随着地理位置的变化,变量间的关系或者结构会发生改变,即所谓的“空间非平稳性”。

传统的线性回归模型(如OLS)在分析空间数据时,由于假设变量间的关系在整个地区保持稳定,往往难以得到满意的结果。

二、基本原理
GWR是对普通线性回归模型的扩展,将数据的空间位置嵌入到回归方程中。

在GWR中,回归系数不再是全局的,而是在每个观测点附近局部生成的。这意味着GWR可以捕捉到在空间上不同地区(或位置)的变量之间关系的差异。

GWR模型的基本形式涉及采样点坐标和采样点上的回归参数,这些参数是关于地理位置的函数。

在估算的过程中,GWR采用权函数的方法得到回归参数,其中空间权重矩阵的选取对回归参数的正确估计至关重要。

空间权重矩阵与权函数:
GWR模型的核心是空间权重矩阵,常见的空间权函数有距离阈值法、距离反比法和Gauss函数法等。

这些权函数通过不同的方式表示权重与距离之间的关系,以反映观测点之间的空间关系。

三、应用
GWR通常用于地理信息系统(GIS)和地理统计学中,用于研究空间数据的空间相关性和空间预测。

它对于在不同地理位置或空间单元内有不同影响因素的研究非常有用,例如研究城市不同区域的人口分布、环境质量、经济发展等。

优点:
由于GWR考虑到了空间对象的局部效应,因此其优势是具有更高的准确性。
它能够捕捉到空间数据的非平稳性,提供更精确的空间分析和预测结果。

四、安装
软件下载地址和样例数据下载地址:
ASU网站:https://sgsup.asu.edu/sparc/multiscale-gwr

注:需要填下名字,类型,email 提交后就可以下载软件和样例数据,在同一个页面中可以下载

在这里插入图片描述
执行后汇总信息
R2: 0.389

R2:  0.389

R2在【0,1】之间,R2值越大越好

================================================================================
MGWR Version: 2.2.1
Released on: 03/20/2020
Source code is available at: https://github.com/pysal/mgwr
Development Team: Ziqi Li, Taylor Oshan, Stewart Fotheringham, Wei Kang, 
Levi Wolf, Hanchen Yu, Mehak Sachdeva, and Sarah Bardin
Spatial Analysis Research Center (SPARC)
Arizona State University, Tempe, USA
================================================================================
Model type:                                                             Gaussian
Number of observations:                                                      159
Number of covariates:                                                          1
Dependent variable:                                                      PctBach
Variable standardization:                                                     On
Total runtime:                                                           0:00:00Global Regression Results
--------------------------------------------------------------------------------
Residual sum of squares:                                                 159.000
Log-likelihood:                                                         -225.611
AIC:                                                                     453.222
AICc:                                                                    455.299
R2:                                                                        0.000
Adj. R2:                                                                   0.000Variable                                   Est.         SE  t(Est/SE)    p-value
------------------------------------ ---------- ---------- ---------- ----------
Intercept                                 0.000      0.080      0.000      1.000Geographically Weighted Regression (GWR) Results
--------------------------------------------------------------------------------
Coordinates type:                                                      Projected
Spatial kernel:                                                   Fixed gaussian
Criterion for optimal bandwidth:                                            AICc
Bandwidth used:                                                        33432.930Diagnostic Information
--------------------------------------------------------------------------------
Residual sum of squares:                                                  97.220
Effective number of parameters (trace(S)):                                25.240
Degree of freedom (n - trace(S)):                                        133.760
Sigma estimate:                                                            0.853
Log-likelihood:                                                         -186.503
Degree of Dependency (DoD):                                                0.363
AIC:                                                                     425.486
AICc:                                                                    436.335
BIC:                                                                     506.013
R2:                                                                        0.389
Adj. R2:                                                                   0.272
Adj. alpha (95%):                                                          0.002
Adj. critical t value (95%):                                               3.146Summary Statistics For GWR Parameter Estimates
--------------------------------------------------------------------------------
Variable                        Mean        STD        Min     Median        Max
--------------------      ---------- ---------- ---------- ---------- ----------
Intercept                      0.002      0.426     -0.561     -0.115      1.469
================================================================================
Acknowledgement:
We acknowledge the support of the National Science Foundation under Award 1758786 
from the Geography and Spatial Sciences Program to A. S. Fotheringham which 
enabled this software to be written and made freely available.
================================================================================

运行过程

Started at:  2024-06-05 14:12:56
Running GWR...
Golden section search minimizing AICc
Bandwidth:  430717.46 , score:  454.46
Bandwidth:  693154.83 , score:  454.97
Bandwidth:  268513.38 , score:  453.27
Bandwidth:  168270.18 , score:  451.11
Bandwidth:  106313.09 , score:  448.07
Bandwidth:  68023.2 , score:  443.43
Bandwidth:  44357.45 , score:  438.39
Bandwidth:  29731.85 , score:  437.13
Bandwidth:  20692.25 , score:  466.46
Bandwidth:  35318.05 , score:  436.46
Bandwidth:  38770.91 , score:  437.06
Bandwidth:  33184.5 , score:  436.34
Bandwidth:  31865.61 , score:  436.45
Bandwidth:  33999.32 , score:  436.35
Bandwidth:  32680.63 , score:  436.36
Bandwidth:  33495.62 , score:  436.34
Bandwidth:  33688.09 , score:  436.34
Bandwidth:  33376.86 , score:  436.34
Bandwidth:  33303.34 , score:  436.34
Bandwidth:  33422.18 , score:  436.34
Bandwidth:  33450.26 , score:  436.34
Bandwidth:  33404.89 , score:  436.34
Bandwidth:  33432.93 , score:  436.34
Bandwidth:  33439.53 , score:  436.34
Fitting GWR using optimal bandwidth:  33432.93
Done!
Ended at:  2024-06-05 14:12:56

本blog地址:https://blog.csdn.net/hsg77

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/22799.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MOE原理解释及从零实现一个MOE(专家混合模型)

什么是混合模型(MOE) 一个MOE主要由两个关键点组成: 一是将传统Transformer中的FFN(前馈网络层)替换为多个稀疏的专家层(Sparse MoE layers)。每个专家本身是一个独立的神经网络,实…

[论文笔记]Mistral 7B

引言 今天带来大名鼎鼎的Mistral 7B的论文笔记。 作者推出了Mistral 7B,这是一个70亿参数的语言模型。Mistral 7B在所有评估基准中表现优于最佳的13B开源模型(Llama 2),并且在推理、数学和代码生成方面胜过最佳发布的34B模型(Ll…

odoo qweb template小结

QWeb QWeb是一个基于XML的模板引擎,可用于生成HTML片段和页面。它使用XML格式来定义模板。QWeb通过在模板中添加特定的标记,来指示模板中的数据和逻辑部分。使用QWeb,你可以创建各种不同的模板,例如列表视图,表单视图和报告等。QWeb支持标准的HTML标记和控制结构,如if语…

研究生学习必备神器

一. 文献下载 1.谷歌学术(google学术):通过注册谷歌账号,利用图书馆功能还能批量下载文献 2.PubMed(PubMed (nih.gov)):主要是一个生物医学的数据库 3.Web of Science(Clarivate):一个综合性学术引擎的数据库 4.citexs(citexs-赛特新思科研助手):可通过关键文献…

D435相机结合Yolo V8识别出目标物体,并转点云出抓取位姿。

最近项目上需要完成整个识别、定位、到最后的抓取流程。 分享一下,通过使用D435相机并结合Yolo V8识别出目标物体后,抠取出目标物体部分的有效深度图,最后将前景物体部分的RGB D435相机结合Yolo V8识别出目标物体,并转点云出抓取位…

从高海拔到严寒季的测量作业更要「快准稳」,怎么实现?

西藏那曲海拔4500米公路勘测项目赶工期 “必须要保障在西藏那曲地区承接的公路勘测项目赶工期需求,海拔高达4500米、网络通讯不足、部分范围存在无网以及地基信号覆盖可能不足的情况,需要能满足环境和项目需求的专业RTK设备紧急送到。” 客户的一个电话…

做外贸是否需要代运营?

相信很多做外贸的小伙伴或者公司都有这样的一个困扰,尤其是做SEO以及平台的公司,会很纠结要不要将公司的运营承包出去。 而之所以有这样的困扰,一部分是公司的业务员可能并不擅长运营,或者是业务员抽不出时间去管理运营这块。 而…

Python | 出现频率最高的字母(数组作为哈希表)

哈希表是根据关键码key的值而直接进行访问的数据结构。 哈希表的作用是快速判断一个元素是否出现在集合里 它的核心思想是在关键码和存储位置之间建立一个确定的对应关系f, 使得每个关键字key对应一个存储位置,而这个对应关系,称之为散列函数&#xff…

映射网络驱动器自动断开的解决方法

如果将驱动器映射到网络共享,映射的驱动器可能会在定期处于非活动状态后断开连接,并且 Windows 资源管理器可能会在映射驱动器的图标上显示红色 X。,出现此行为的原因是,系统可以在指定的超时期限后断开空闲连接, (默认…

PWA缓存策略区别NetworkOnly/CacheFirst/CacheOnly/NetworkFirst/StaleWhileRevalidate

现在来看看 Workbox 提供的缓存策略,主要有这几种: cache-first, cache-only, network-first, network-only, stale-while-revalidate 在前面看到,实例化的时候会给 workbox 挂载一个 Strategies 的实例。提供上面一系列的缓存策略&…

python判断‘2024-06-04’时间字符串是不是今天

在Python中,你可以使用内置的open()函数来打开HTML文件,但通常你会希望解析HTML内容以获取其中的文本,因为HTML文件通常包含标签和属性,而不仅仅是纯文本。 为了解析HTML并提取文本内容,你可以使用像BeautifulSoup这样…

深入理解Java内存模型(JMM)与并发

在多线程编程中,理解Java内存模型(Java Memory Model, JMM)至关重要。JMM定义了Java程序中变量(包括实例字段、静态字段和数组元素)如何在多线程环境中交互的规则。掌握这些规则,可以帮助开发者编写出正确且…

半导体制造中的压缩气体及其高压扩散器如何选择 北京中邦兴业

了解高压扩散器 高压扩散器(HPD)对于保持压缩气体样品中颗粒计数的精度至关重要。它们充当颗粒计数器和压缩气体管线之间的纽带,在气体进入颗粒计数器的样品入口时使其扩散。这确保了压力得到控制,以防止对颗粒计数器样品室的敏感…

uniapp学习(001 前期介绍)

零基础入门uniapp Vue3组合式API版本到咸虾米壁纸项目实战,开发打包微信小程序、抖音小程序、H5、安卓APP客户端等 总时长 23:40:00 共116P 此文章包含第1p-第p10的内容 简介 目录结构 效果 打包成小程序 配置开发者工具 打开安全按钮 使用uniapp的内置组件…

3DMAX一键虚线图形插件DashedShape使用方法

3DMAX一键虚线图形插件使用方法 3dMax一键虚线图形插件,允许从场景中拾取的样条线创建虚线形状。该工具使你能够创建完全自定义的填充图案,为线段设置不同的材质ID,并在视口中进行方便的预览。 【版本要求】 3dMax 2012 – 2025(…

二十六、 如何确定落实数据跨境传输合规措施的内部牵头部门?

企业在落实数据跨境传输合规措施时,可能会需要法务、信息安全与安全运维、审计内控、人力资源等多个部门联动配合。 其中,法务部门通常负责协助相关部门识别在业务开展过程中涉及的各种数据类型,梳理各种类型数据的境内外传输链路&#xff0c…

es6 proxy的作用和用法

Proxy 是 ES6 中新增的一个构造函数,它用于创建一个代理对象,可以拦截并自定义对象的基本操作,例如属性查找、赋值、枚举、函数调用等。 使用 Proxy 可以实现许多高级功能,例如数据绑定、校验、撤销/重做等。下面是一个简单的示例…

Python 动态导入库

Python 动态导入库 从一个文件夹下遍历所有.py文件,并利用__Import__()函数实现全局导入 例程 import os # 导入操作系统接口模块 import sys # 导入系统模块# 将当前目录下的 DIR 目录添加到系统路径中,以便后续导入模块 sys.path.append(./DIR)# …

LeetCode每日一题:将元素分配到两个数组中 II - 二叉索引树BIT

大家好!今天我们来聊聊一道有趣的LeetCode分配问题将元素分配到两个数组中 II。📊 问题描述 给你一个下标从 1 开始、长度为 n 的整数数组 nums 。 现定义函数 greaterCount ,使得 greaterCount(arr, val) 返回数组 arr 中 严格大于 val 的…

spring入门aop和ioc

文章目录 spring分层架构表现层服务层(业务层)持久层 spring核心ioc(控制反转)1)**接下来是代码示例:**2)**ioc容器的使用过程**3)ioc中的bean管理4)实例化bean的三种方式 aop(面向切面开发) 定…