超越传统AI 新型多智能体系统MESA,探索效率大幅提升

61ac9d81179474d5bea8cc452838110b.jpeg


探索多智能体强化学习的协同元探索 —— MESA 算法深度解读在多智能体强化学习(MARL)的征途中,如何高效探索以发现最优策略一直是研究者们面临的挑战。特别是在稀疏奖励的环境中,这一问题变得更加棘手。《MESA: Cooperative Meta-Exploration in Multi-Agent Learning through Exploiting State-Action Space Structure》这篇论文为我们带来了一种新颖的解决方案——MESA算法,它通过利用状态-动作空间的结构,实现了多智能体间的协同元探索,显著提升了在复杂任务中的探索效率。Zhicheng Zhang、Yancheng Liang、Yi Wu和Fei Fang等研究者们精心设计的MESA算法,在多步矩阵游戏和连续控制任务中展现了其卓越的性能。它不仅能够有效地促进智能体在测试任务中的学习,还能泛化至更具挑战性的未见任务。              

通过这篇文章,您将获得:

  • 高效探索策略:了解MESA如何通过元探索方法提升多智能体学习的探索效率。

  • 结构化学习方法:探索MESA如何识别高奖励的状态-动作子空间,并训练多样化的探索策略。

  • 实际应用案例:通过MESA在多智能体粒子环境和MuJoCo环境中的实验,见证其在实际应用中的显著成效。


引言:多智能体系统中的探索挑战

在多智能体系统(MAS)中,探索是一个核心问题,尤其是在合作或竞争环境下。有效的探索策略可以显著提高学习效率,帮助智能体更快地适应环境并找到最优策略。然而,多智能体环境的复杂性,如状态空间的指数增长和部分可观测性,使得传统的单智能体探索方法往往不再适用。

在多智能体环境中,每个智能体的行为不仅影响自己的收益,还可能影响其他智能体的收益,这增加了探索的难度。例如,一个智能体的探索行为可能会导致环境状态变化,从而影响到其他智能体的决策。此外,智能体需要在探索新策略和利用已知策略之间找到平衡,这在多智能体设置中尤为复杂。

为了应对这些挑战,研究者们提出了多种多智能体探索策略,旨在通过协作或竞争来优化整体或个体的性能。这些方法通常需要在探索效率和计算复杂性之间做出权衡。有效的多智能体探索不仅能加速学习过程,还能在复杂的环境中促进更高级别的策略和协作形成。

3a0fc37a66e2d2b149431eb9f1f2bc51.jpeg

论文基本信息

标题:MESA: Cooperative Meta-Exploration in Multi-Agent Learning through Exploiting State-Action Space Structure

作者

  • Zhicheng Zhang, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
  • Yancheng Liang, University of Washington, Seattle, Washington, United States
  • Yi Wu, Tsinghua University, Beijing, China
  • Fei Fang, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

机构

  • Carnegie Mellon University
  • University of Washington
  • Tsinghua University

论文链接:https://arxiv.org/pdf/2405.00902.pdf

MESA方法概述

MESA(Cooperative Meta-Exploration in Multi-Agent Learning through Exploiting State-Action Space Structure)是一种针对多智能体学习的元探索方法,旨在通过利用状态-动作空间结构来提高探索效率。在多智能体强化学习(MARL)中,探索效率尤为关键,因为环境的复杂性和智能体间的交互增加了学习的难度。MESA通过在元训练阶段识别高奖励的状态-动作子空间,并训练一组多样化的探索策略来覆盖这一子空间,从而实现高效的探索。这些探索策略在元测试阶段被用来辅助智能体在新任务中的学习。

844088ef9918bc2923139bfcafda6fa3.jpeg

元训练阶段详解

1. 高奖励状态-动作子空间的识别

在元训练阶段的第一步,MESA需要确定哪些状态-动作对能够带来高奖励。这一过程涉及到在多个训练任务中收集数据,并从中筛选出奖励高于某个阈值的状态-动作对。这些被认为是有价值的状态-动作对将被存储在一个数据集M*中,用于后续的探索策略训练。对于目标导向的任务,这个阈值可以是达到目标状态的奖励。

2. 探索策略的训练和奖励机制

在识别了高奖励的状态-动作子空间后,MESA将训练一组探索策略来有效覆盖这一子空间。这些探索策略的训练使用了基于距离高奖励子空间的距离来诱导的奖励机制。具体来说,如果一个访问的状态-动作对足够接近已识别的高奖励子空间(即,它与子空间中的某个点的距离小于某个阈值ε),它将获得一个正的派生奖励。为了鼓励探索策略覆盖更广泛的子空间并避免模式崩溃,MESA采用了一种奖励分配方案,确保对相似的状态-动作对的重复访问会得到递减的奖励。

通过这种方式,MESA不仅提高了探索的效率,还通过元学习框架使得智能体能够在面对新任务时迅速适应,展现出良好的泛化能力。这一方法已在多种任务中得到了验证,包括矩阵攀爬游戏和连续控制任务,与现有的多智能体学习和探索算法相比,MESA显示出了优越的性能。

元测试阶段应用

在元测试阶段,MESA(Cooperative Meta-Exploration in Multi-Agent Learning through Exploiting State-Action Space Structure)利用在元训练阶段学习到的探索策略来辅助多智能体在未见过的任务中的学习。这些探索策略是从一组训练任务中学习得到的,这些任务在状态-动作空间中具有内在的结构特征。在元测试阶段,MESA通过随机选择已学习的探索策略来收集有价值的经验,从而帮助智能体更有效地学习良好的联合策略。

1. 探索策略的应用:在每个回合中,MESA以一定的概率执行一个随机选取的探索策略。这些探索策略在初始阶段提供更多的回合,以帮助智能体快速适应新环境,随后逐渐减少探索策略的使用,转而让智能体依赖其自身的学习成果。

2. 策略的效果评估:MESA的探索策略在多个环境中表现出色,包括矩阵攀登游戏及其多阶段变体和连续控制任务。这些策略不仅提高了探索效率,还显示出对未见测试任务的泛化能力,这些测试任务比任何训练任务都要具有挑战性。

实验设计与评估

MESA的实验设计旨在评估元学习探索策略在新任务中的表现,并与其他多智能体学习和探索算法进行比较。实验在不同的环境中进行,包括矩阵攀登游戏的变体、多智能体粒子环境(MPE)和多智能体MuJoCo基准测试。

1. 实验设置:实验比较了MESA与其他几种多智能体强化学习算法,如MADDPG、MAPPO和QMIX,以及几种探索算法,如MAVEN和基于RND的探索。此外,还测试了几种采用类似元训练阶段的基线方法,包括未条件共享策略和目标条件策略。

2. 评估方法:评估主要关注探索策略在元测试阶段的表现,特别是它们在新采样任务中的探索效率。通过与基线方法的比较,展示了MESA在攀登游戏变体和高维领域任务中的优势。此外,还研究了这些探索策略在更具挑战性的测试任务分布中的泛化性能。

通过这些详尽的实验设计和评估,MESA证明了其在多智能体学习中应用元探索方法的有效性,尤其是在处理结构化探索任务和高维控制问题时的优势。

60bc24be9d61279de69f5f96e3ff96f3.jpeg

36b7f37d8504b7c8b413ee79e8f496ae.jpeg

结果分析与讨论

1. MESA在Climb Game变体中的表现

MESA在Climb Game的变体中表现出色。在单步Climb Game中,MESA能够在一些更困难的任务中找到最优解,而其他基线方法则几乎在所有任务中停留在次优解。在多阶段Climb Game中,由于任务空间指数级增长,MESA的表现远超其他算法。通过已学习的探索策略,MESA能够迅速学习每个阶段的最优联合动作,避免陷入次优解。

2. MESA在多智能体MuJoCo环境中的应用

在多智能体MuJoCo环境中,MESA同样展现了优异的性能。特别是在2-agent Swimmer环境中,MESA通过学习的探索策略,频繁地达到目标角度,显著优于其他基线方法。这一环境极为复杂,因为智能体很可能收敛到次优的奖励,但MESA通过有效的探索策略,成功地学习到了最终策略,频繁地达到目标状态。

3. MESA的泛化能力评估

MESA在未见测试任务上的泛化能力表现突出。尤其是在任务分布更具挑战性的情况下,MESA展现了良好的零样本泛化能力。通过在简单任务上训练的探索策略,MESA能够在更难的测试任务上加速训练性能,连续达到高奖励区域,而标准的MADDPG算法则只能学习到次优平衡。

c3a696a90c05f6d4c61795a62aedb09e.jpeg

MESA方法的优势与局限

优势

  1. 结构化探索策略:MESA通过在训练阶段识别高奖励的状态-动作子空间,并训练一组探索策略来覆盖这一子空间,从而实现高效的结构化探索。
  2. 优异的泛化能力:MESA展现了在从简单任务到复杂任务的泛化能力,这得益于其能够利用训练任务中学到的结构化探索策略。
  3. 与现有算法的兼容性:MESA可以与任何离策略的多智能体强化学习算法结合使用,提高了其适用性。

局限

  1. 依赖于任务结构的显式识别:MESA的性能高度依赖于在训练阶段正确识别出高奖励的状态-动作子空间。如果这一子空间识别不准确,可能会影响探索策略的有效性。
  2. 计算资源需求:由于需要在多个任务上训练探索策略,MESA可能需要较多的计算资源,尤其是在任务空间较大时。
  3. 对高奖励状态的依赖:MESA的探索策略训练依赖于高奖励状态的采集,这在奖励稀疏的环境中可能是一个挑战。

总结与未来展望

在本文中,我们介绍了一种新的多智能体元探索方法MESA(Cooperative Meta-Exploration in Multi-Agent Learning through Exploiting State-Action Space Structure),该方法通过利用状态-动作空间结构来提高多智能体学习的探索效率。MESA框架在元训练阶段通过一系列训练任务学习探索策略,并在元测试阶段利用这些策略帮助智能体在未见过的任务中进行学习。我们的实验结果显示,MESA在多种环境和任务中均优于现有的多智能体学习和探索算法,尤其是在需要协调探索的复杂环境中。

1. 主要贡献

MESA的主要贡献在于其能够有效地识别和利用训练任务中的高奖励状态-动作子空间,从而训练出一组多样化的探索策略。这些策略在元测试阶段被用来引导智能体探索新任务,显著提高了学习效率和策略性能。此外,MESA展示了良好的泛化能力,能够将在相对简单的任务中学到的探索策略成功应用于更复杂的测试任务,从而解决了多智能体系统中的探索难题。

2. 实验验证

通过在不同的游戏和控制任务中进行广泛的实验,包括Climb Game变体和多智能体MuJoCo环境,MESA不仅在学习效率上超过了其他基线方法,还在多阶段游戏和高维任务中表现出卓越的性能。这些结果验证了MESA探索策略的有效性和适应性。

3. 未来工作

尽管MESA已经取得了一定的成功,但仍有一些潜在的改进空间和未来的研究方向。例如,如何进一步优化探索策略的学习过程,减少所需的训练任务数量,以及如何更好地处理动态变化的环境和任务。此外,探索如何将MESA扩展到非合作或竞争性的多智能体环境中也是未来研究的一个重要方向。

总之,MESA为解决多智能体系统中的协同探索问题提供了一个有效的框架,并为未来在更广泛的应用领域中推广元探索策略奠定了基础。我们期待看到MESA在更多实际应用中的表现,并希望它能激发更多关于多智能体学习和探索的研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/22671.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用扫描书籍的功能扫描文档是扫描件吗?

当使用扫描书籍的功能来扫描文档时,产生的结果通常被称为“扫描件”或“扫描图像”。这里的“扫描”一词指的是通过扫描仪或具有扫描功能的设备(如一些高端打印机、多功能一体机等)将纸质文档转换为数字图像的过程。 扫描件通常是高清晰度的…

关于phpstorm创建类和方法时带描述注释

展示效果&#xff1a; 1、使用phpstorm创建类文件时自带注释及注释编辑 步骤1&#xff1a; 步骤二&#xff1a; 内容&#xff1a; <?php /** * Desc: * author guowei * datetime $DATE $TIME */ #if (${NAMESPACE}) namespace ${NAMESPACE}; #end class ${NAM…

计算机网络 —— 数据链路层(以太网)

计算机网络 —— 数据链路层&#xff08;以太网&#xff09; 什么是以太网以太网传输介质和拓扑结构的发展传输介质的发展&#xff1a;拓扑结构的发展&#xff1a; 10BASE-T 以太网适配器和MAC地址适配器&#xff08;Adapter&#xff09;MAC地址适配器与MAC地址的关系 MAC帧以太…

使用Java进行网络采集:代理IP与参数传递详解

在Java编程语言中&#xff0c;参数传递机制是一个常见的讨论话题。理解这一点对于编写高效且无错误的Java代码至关重要。本文将探讨Java的参数传递机制&#xff0c;解析其究竟是“按引用传递”还是“按值传递”&#xff0c;并结合网络爬虫技术的实例&#xff0c;展示如何在实际…

【机器学习】机器学习与推荐系统在电子商务中的融合应用与性能优化新探索

文章目录 引言机器学习与推荐系统的基本概念机器学习概述监督学习无监督学习强化学习 推荐系统概述基于内容的推荐协同过滤混合推荐 机器学习与推荐系统的融合应用用户行为分析数据预处理特征工程 模型训练与评估模型训练模型评估 个性化推荐基于用户的协同过滤基于商品的协同过…

【Git教程】(二十)外包长历史记录 — 概述及使用要求,执行过程及其实现,替代解决方案 ~

Git教程 外包长历史记录 1️⃣ 概述2️⃣ 使用要求3️⃣ 执行过程及其实现3.1 外包项目历史3.2 链接到当前活动版本库 Git 版本库会随着时间积累越来越大&#xff0c;会影响它的内存管理效率。通常在版本库中只有源 代码文件情况下&#xff0c;这点效率影响可以忽略不计。在现…

WSDM 2023 推荐系统相关论文整理(三)

WSDM 2023的论文录用结果已出&#xff0c;推荐系统相关的论文方向包含序列推荐&#xff0c;点击率估计等领域&#xff0c;涵盖图学习&#xff0c;对比学习&#xff0c;因果推断&#xff0c;知识蒸馏等技术&#xff0c;累计包含近四十篇论文&#xff0c;下文列举了部分论文的标题…

Stable Diffusion【应用篇】【图片修复】:模糊头像照片的高清修复

本文主要是回复一下后台小伙伴留言的问题。经小伙伴本人同意后&#xff0c;允许使用待修复的照片。 我们先看一下待修复的照片。 在向我咨询之前&#xff0c;小伙伴也自己进行了尝试&#xff0c;如果直接使用Stable Diffusion的后期处理功能&#xff0c;出来的图片效果是这样的…

GPEN——使用GANs恢复对人脸图像进行修复

1. 简介 盲目的面部修复&#xff08;Blind Face Restoration, BFR&#xff09;是一个活跃的研究领域&#xff0c;它涉及到在没有任何先验信息的情况下改善低质量&#xff08;Low Quality, LQ&#xff09;图像的质量。这确实是一个具有挑战性的问题&#xff0c;因为模型需要能够…

3分钟学会短信群发-在线云短信平台发送教程

在线云短信平台发送教程 这是一个简单的短信平台的电脑在线发送教程&#xff0c;快速上手三分钟搞定&#xff0c;欢迎讨论分享&#xff1a; 1.登录短信平台 找一个资质齐全的在线云短信平台&#xff0c;以赛邮为例&#xff0c;注册认证后创建短信模版。 2.创建短信模版 输入编辑…

在加拿大寻求2亿美元融资!Xanadu的CEO有话要说

内容来源&#xff1a;量子前哨&#xff08;ID&#xff1a;Qforepost&#xff09; 文丨慕一/娴睿 排版丨沛贤 深度好文&#xff1a;1500字丨5分钟阅读 摘要&#xff1a;加拿大光量子计算头部企业Xanadu希望在加拿大筹集1-2亿美元&#xff0c;用于建立量子数据中心。虽然融资不…

期刊的分类与级别

在学术界&#xff0c;期刊的分类与级别构成了一个评价学术成果和学者贡献的重要标准&#xff0c;同时也是学术出版与学术交流的基础。然而&#xff0c;对于初涉学者来说&#xff0c;理解期刊的分类与级别可能并不直观。本文旨在提供一个系统性的解释&#xff0c;并阐述为何期刊…

【优选算法】字符串

一、相关编程题 1.1 最长公共前缀 题目链接 14. 最长公共前缀 - 力扣&#xff08;LeetCode&#xff09; 题目描述 算法原理 编写代码 // 解法一&#xff1a;两两比较 class Solution { public:string longestCommonPrefix(vector<string>& strs) {int k strs[0…

AI烟火识别算法在消防安全与火灾预警系统中的应用与价值

在信息化和智能化的今天&#xff0c;烟火识别算法作为一种重要的技术工具&#xff0c;在火灾预防和处理中发挥着关键作用。其工作原理主要基于深度学习和图像处理技术&#xff0c;能够实时分析监控画面&#xff0c;准确检测出图像中的烟火&#xff0c;并发出预警。 一、烟火识…

多功能光时域反射仪的工作原理

6426A-2101多功能光时域反射仪是新一代掌上型智能化光纤通信测量仪器&#xff0c;具有强大的功能和广泛的应用领域。它能够显示光纤及光缆的损耗分布曲线图&#xff0c;测量光纤及光缆的多种关键参数&#xff0c;包括长度、损耗、接续质量等&#xff0c;为光纤通信系统的工程施…

ubuntu20.04设置文件开机自启动

硬件&#xff1a;树霉派4B 系统&#xff1a;ubuntu20.04 在ubuntu20.04上经常需要运行 ./BluetoothServerParse_L.c ,比较繁琐&#xff0c;想要设置开机自启动&#xff0c;让树霉派4B在接上电源之后就自动运行该程序。使用systemd服务&#xff0c;设置步骤如下&#xff1a; &…

Intersection Observer API---交叉观察器 API

Intersection Observer API 交叉观察器 API&#xff08;Intersection Observer API&#xff09;提供了一种异步检测目标元素与祖先元素或顶级文档的视口相交情况变化的方法,例如&#xff0c;可以观察判断一个div&#xff08;有大小的&#xff09;盒子在是否出现在窗口&#xff…

【全开源】小区入户安检系统(FastAdmin + Uni-APP)

守护家的每一道防线 一款基于FastAdmin Uni-APP开发的小区入户安检系统(前端可发布为小程序、H5、App)。可针对不同行业自定义安检项目&#xff0c;线下安检&#xff0c;线上留存&#xff08;安检拍照/录像&#xff09;&#xff0c;提高安检人员安检效率。 一、引言&#xff…

数据结构:一般哈希

数据结构&#xff1a;一般哈希 题目描述参考代码拉链法开放寻址法 题目描述 输入样例 5 I 1 I 2 I 3 Q 2 Q 5输出样例 Yes No参考代码 拉链法 #include <iostream> #include <cstring> using namespace std;const int N 100003;int h[N], e[N], ne[N], idx;vo…

【文末附gpt升级秘笈】Suno全新功能在音乐创作领域的应用与影响

Suno全新功能在音乐创作领域的应用与影响 摘要&#xff1a; 随着科技的飞速发展&#xff0c;人工智能与音乐创作的结合日益紧密。本文旨在探讨Suno全新功能——即兴哼唱创作与声音模仿——在音乐创作领域的应用与影响。通过深入分析这一技术的原理、特点及其在音乐创作中的实际…