TH方程学习 (7)

一、内容介绍

TH存在广泛应用,在下面案例中,将介绍几种相对运动模型,斜滑接近模型,本节学习斜滑接近制导方法能够对接近时间、接近方向以及自主接近过程的相对速度进行控制。施加脉冲时刻追踪器的位置连线可构成一条直线,即理想轨道,实际接近轨道和理想接近轨道在脉冲施加时刻相交。脉冲施加的次数越多,则实际轨道偏离理想轨道越少;脉冲施加次数趋近于无穷大时,实际交会轨道将会和理想轨道重合,接近一条直线,从大范围看,多脉冲斜滑接近整个过程基本是沿直线运动的。

设追踪器在接近段的初始时刻,相对运动状态为\boldsymbol{r}_0\dot{\boldsymbol{r}_0},接近段终端时刻T的相对状态为\boldsymbol{r}_T\dot{\boldsymbol{r}}_T。设追踪器沿准直线完成对目标器的接近,由\boldsymbol{r}_T指向\boldsymbol{r}_0的直线矢量\boldsymbol{\rho}为规划轨迹。所以,在任意时刻t

\boldsymbol{\rho}(t)=\boldsymbol{r}_c(t)-\boldsymbol{r}_T

其中,\boldsymbol{r}_c(t)为追踪器在该直线上某点处的位置矢量。

矢量\boldsymbol{\rho}的单位矢量为

\boldsymbol{u}_{\rho}=[\cos\alpha,\cos\beta,\cos\gamma]^{T}

其中,\alpha,\beta,\gamma表示矢量\boldsymbol{\rho}(T)在VVLH坐标系中投影与三个坐标轴的夹角,从而决定了接近方向。矢量可以表示为

\boldsymbol{\rho}=\left | \rho \right |\boldsymbol{u}_{\boldsymbol{\rho}}

在接近过程中,可根据接近轨迹快速性和安全性等多种需求来确定\rho,\dot{\rho}的变化关系,即设计理想的交会轨迹。典型的相对运动速度变化模式有指数型,这里采用指数型,\rho\dot{\rho}为线性关系

\dot{\rho}=a\rho+\dot{\rho}_T\\\rho(t)=\rho_0\exp(at)+\frac{\dot{\rho}_T}{a}(\exp at)-1)

上式中a为斜率。则整个接近段的转移时间T为

T=\frac{1}{a}\ln\frac{\dot{\rho}_T}{\dot{\rho}_0}

设接近段采用多脉冲分段控制,作用N次速度脉冲使绕飞卫星在时间T内从初始位置\boldsymbol{r}_0转移到终点位置\boldsymbol{r}_T。任意控制段的两次脉冲作用的时间间隔是相同的,即\Delta t=T/N

在时刻t_m=m\Delta t(m=0,1,..,N-1),经过第m次速度脉冲后,绕飞卫星从\boldsymbol{r}_m转移到\boldsymbol{r}_{m+1},有

\boldsymbol{r}_m=\boldsymbol{r}_T+\rho_m \boldsymbol{u}_{\rho}\\ \rho_m=\rho_0\exp(at_m)+\frac{\dot{\rho}_T}{a}(\exp(at_m)-1)

每个阶段相当于一次双脉冲轨道转移,可通过如下编程

% 本节旨在利用TH方程实现椭圆的轨道的滑行制导
clc;clear
% 初始化条件
Ecc    =  0.1;
Perigee=  500;
TA     =  45;
N      =  5  ;    %施加脉冲次数  
r_i    =  [1;1;1];
v_i    =  [0.01;0.01;0.01];
% 期望末端条件
r_f    =  [0.1;0;0];
v_f    =  [0;0;0];
% 求出初始相对距离
rho0   =  norm(r_i-r_f);
rhof   =  0;%设计初始和结束沿着rho方向的速度
drho0  =  -0.005;
drhof  =  -0.0001;
a            =  (drho0-drhof)/rho0;
t            =  1/a *log(drhof/drho0);
% 求出单位矢量
u_rho        =  (r_i-r_f)/rho0;rho1_vec     =  zeros(3,N);
rho1_vec(:,1)=  r_i;
% 记录每次施加脉冲前的速度
vvff         =   zeros(3,N);
vvff(:,1)    =  v_i;
% 记录每次施加脉冲后的速度
vvrr         =  zeros(3,N);
vvrr(:,N)    =  v_f; 
delta_t      =  t/(N-1);
% 脉冲希望到达的位置
for i=1:N-1t1            =  i*t/(N-1);rho1          =  rho0*exp(a*t1)+drhof/a*(exp(a*t1)-1);rho1_vec(:,i+1) = r_f+rho1*u_rho;    [v,Phi,vv]    =  TH_solver(Ecc,Perigee,TA,rho1_vec(:,i),vvff(:,i),t/(N-1));Phiall{i}     =  Phi;Phi_rr        =  Phi(1:3,1:3);Phi_rv        =  Phi(1:3,4:6);vvrr(:,i)     =  inv(Phi_rv)*(rho1_vec(:,i+1)-Phi_rr*rho1_vec(:,i));[x,Phi0,xx]   =  TH_solver(Ecc,Perigee,TA,rho1_vec(:,i),vvrr(:,i),t/(N-1));yy(:,i)       =  x(1:3);vvff(:,i+1)   =  x(4:6);
end
dv=vvrr-vvff;
Phiall{4}*[rho1_vec(:,4);vvrr(:,4)];
tt            =  linspace(0,delta_t,1000);
for ss=1:Nfor j=1:length(tt)[mm,Phi00,zz0]=  TH_solver(Ecc,Perigee,TA,rho1_vec(:,ss),vvrr(:,ss),tt(j));tarx((ss-1)*1000+j)       =  mm(1);tary((ss-1)*1000+j)       =  mm(2);tarz((ss-1)*1000+j)       =  mm(3);end
end
% 使用STK验证VVLH坐标系
uiApplication = actxGetRunningServer('STK12.application');
root = uiApplication.Personality2;
checkempty = root.Children.Count;
if checkempty ~= 0root.CurrentScenario.Unloadroot.CloseScenario;
end
root.NewScenario('VVLH');
StartTime = '26 Jan 2024 04:00:00.000';    % 场景开始时间
StopTime = '10 Feb 2024 04:00:00.000';     % 场景结束时间
root.ExecuteCommand(['SetAnalysisTimePeriod * "',StartTime,'" "',StopTime,'"']);
root.ExecuteCommand(' Animate * Reset');
SatName = 'Target';       %  SAR_   GX_   Sat_  GX_1_  SAR_1_
satellite = root.CurrentScenario.Children.New('eSatellite', SatName);
satellite.SetPropagatorType('ePropagatorAstrogator');   %  不设置的时候默认为二体模型  ePropagatorJ4Perturbation
satellite.Propagator;
% 目标星初始状态
Perigee = 500;
T       = 60;
% 追踪星在VVLH坐下的相对位置
delta_r = [1;1;1];
delta_v = [0.01;0.01;0.01];
Perige  = 6378.137+Perigee;
ecc     = 0.1;
sma     = Perige/(1-ecc);
Inc     = 30;
w       = 0;
RAAN    = 0;
TA      = 45;
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList Initial_State Propagate']);
InitialState=satellite.Propagator.MainSequence.Item(0);
%% 初始化卫星参数
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.CoordinateType Modified Keplerian']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Epoch ',StartTime,' UTCG']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.sma ',num2str(sma),' km']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.ecc ',num2str(ecc)]);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.inc ',num2str(Inc),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.w ',num2str(w),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.RAAN ',num2str(RAAN),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.TA ',num2str(TA),' deg']);
%% 二体传播
Propagate=satellite.Propagator.MainSequence.Item(1);
Propagate.PropagatorName='Earth Point Mass';
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' RunMCS']);% 插入目标星
SatName2 = 'Chaser';       
satellite2 = root.CurrentScenario.Children.New('eSatellite', SatName2);
satellite2.SetPropagatorType('ePropagatorAstrogator');   %  不设置的时候默认为二体模型  ePropagatorJ4Perturbation
satellite2.Propagator;
InitialState2=satellite2.Propagator.MainSequence.Item(0);
InitialState2.CoordSystemName='Satellite/Target VVLH';
InitialState2.Element.X=delta_r(1);
InitialState2.Element.Y=delta_r(2);
InitialState2.Element.Z=delta_r(3);
InitialState2.Element.Vx=delta_v(1);
InitialState2.Element.Vy=delta_v(2);
InitialState2.Element.Vz=delta_v(3);
Propagate2=satellite2.Propagator.MainSequence.Item(1);
Propagate2.PropagatorName='Earth Point Mass';
for j=1:NManeuverName=['Maneuver',num2str(j)];PropagateName=['Propagate',num2str(j)];satellite2.Propagator.MainSequence.Insert('eVASegmentTypeManeuver',ManeuverName,'Propagate');Maneuver=satellite2.Propagator.MainSequence.Item(ManeuverName);root.ExecuteCommand(['Astrogator */Satellite/',SatName2,' SetValue MainSequence.SegmentList.',ManeuverName,'.ImpulsiveMnvr.AttitudeControl Thrust Vector']);Maneuver.Maneuver.AttitudeControl.ThrustAxesName='Satellite VVLH.Axes';Maneuver.Maneuver.AttitudeControl.X=dv(1,j)*1000;Maneuver.Maneuver.AttitudeControl.Y=dv(2,j)*1000;Maneuver.Maneuver.AttitudeControl.Z=dv(3,j)*1000;satellite2.Propagator.MainSequence.Insert('eVASegmentTypePropagate',PropagateName,'Propagate');Propagate3=satellite2.Propagator.MainSequence.Item(PropagateName);Propagate3.PropagatorName='Earth Point Mass';Propagate3.Properties.Color=255;Propagate3.StoppingConditions.Item(0).Properties.Trip = delta_t;
end
satellite2.Propagator.MainSequence.Cut('Propagate')
root.ExecuteCommand(['Astrogator */Satellite/',SatName2,' RunMCS']);
% 报告二颗卫星的三维关系
satellite.VO.OrbitSystems.InertialByWindow.IsVisible=0;
satellite2.VO.OrbitSystems.InertialByWindow.IsVisible=0;
satellite2.VO.OrbitSystems.Add('Satellite/Target VVLH System')
satellite.VO.Vector.RefCrdns.Item(2).Visible=1;targetdata=root.ExecuteCommand(['Report_RM */Satellite/Target  Style "VVLH" TimePeriod "26 Jan 2024 04:00:00.000" "26 Jan 2024 4:30:00.000" TimeStep 1']);
Num=targetdata.Count;
root.ExecuteCommand('Astrogator */Satellite/Target ClearDWCGraphics');
root.ExecuteCommand('Astrogator */Satellite/Chaser ClearDWCGraphics');
for j=1:Num-2struct=regexp(targetdata.Item(j),',','split');Tar_x(j)=str2double(struct{2});Tar_y(j)=str2double(struct{3});Tar_z(j)=str2double(struct{4});
endfigure(1)
plot3(Tar_x(1:floor(t)),Tar_y(1:floor(t)),Tar_z(1:floor(t)),'LineWidth',1);
hold on
plot3(tarx,tary,tarz,'LineWidth',1)
axis([-1.5 1.5 -1.5 1.5 -1.5 1.5])
set(gca,'XDir','reverse');
set(gca,'YDir','reverse');
set(gca,'ZDir','reverse');
xlabel('X axis(km)','FontName','Times New Roman')
ylabel('Y axis(km)','FontName','Times New Roman')
zlabel('Z axis(km)','FontName','Times New Roman')
title('e=0.1,Perigee=500km','FontName','Times New Roman')
grid onplot3(rho1_vec(1,:),rho1_vec(2,:),rho1_vec(3,:),'g.')
plot3(delta_r(1),delta_r(2),delta_r(3),'r.')legend('transfer trajectory(STK)','trasnfer trajecoty(TH)','Impulsive Point','Original','Location','Northeast')

得到最终的结果,滑移的曲线如图所示

下图是每次施加脉冲前和施加脉冲后的位置速度,将上述脉冲形式写入STK,使用二体预报,发现计算出来的脉冲曲线与TH状态转移方程计算出来的曲线不一致,存在微小的误差。并且随着脉冲次数的增多,该误差会更加明显。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/22633.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动装车系统车辆定位-激光雷达解决方案

在自动装车系统中,激光雷达为车辆定位提供了一种高效且精确的解决方案。以下是关于这一解决方案的详细分析: 一、解决方案概述 激光雷达解决方案在自动装车系统中,通过发射激光束并接收目标反射回来的信号,来探测车辆的位置、状…

Win10下CodeBlock实现socket TCP server/client

文章目录 1 安装codeblock2 适配libws2_32.a库3 TCP socket工作原理4 代码实现服务端客户端5 运行效果1 安装codeblock 官方免费下载 值得一提的是,安装时,指定安装路径,其他默认安装即可 2 适配libws2_32.a库 默认安装,只有3个库,如果编译socket,需要专门的库libws2…

CA到TA的调用流程是什么?如何实现的?

快速链接: . 👉👉👉Trustzone/TEE/安全 面试100问-目录 👈👈👈 付费专栏-付费课程 【购买须知】:联系方式-加入交流群 ----联系方式-加入交流群 个人博客笔记导读目录(全部) 简单一点来说,CA…

【机器学习基础】Python编程02:五个实用练习题的解析与总结

Python是一种广泛使用的高级编程语言,它在机器学习领域中的重要性主要体现在以下几个方面: 简洁易学:Python语法简洁清晰,易于学习,使得初学者能够快速上手机器学习项目。 丰富的库支持:Python拥有大量的机器学习库,如scikit-learn、TensorFlow、Keras和PyTorch等,这些…

SolidWorks价格与其它CAD软件相比:为什么选择SolidWorks更划算

在CAD软件的浩瀚星海中,SolidWorks如同一颗璀璨的明星,以其卓越的性能、广泛的适用性和合理的定价策略,赢得了全球众多工程师和设计师的青睐。亿达四方,作为官方授权的SolidWorks代理商,今天将带您深入价格与功能的比较…

【成品设计】基于单片机的智慧交通控制系统设计

《基于单片机的智慧交通控制系统设计》 所需器件: STM32最小系统板。按键模块。红黄绿LED灯柱。距离传感器。OLED屏幕。语音识别模块。 整体功能: 本文介绍了一种基于单片机的智慧交通控制系统设计。该系统集成了多种传感器、控制器和执行器&#xf…

外卖APP与外卖小程序开发:从源码到上线的全流程

本文,小编将详细介绍外卖系统与小程序开发的全过程,从源码的编写到系统的上线,为开发者提供全面的指导。 一、需求规划 用户需要一个简单易用的点餐界面,商家需要管理菜单、订单和配送,后台管理则需要监控系统运行状况…

交互式流程图组件DHTMLX Diagram v6.0 - 拥有更灵活的高度可定制功能

DHTMLX Diagram库允许用几行代码构建JavaScript流程图,通过自动布局和实时编辑器,它可以更容易地将复杂数据可视化到一个整洁的层次结构中。 DHTMLX Diagram v6.0版本发布,带来了众多令人兴奋的新功能和改进,使得这个JavaScript图…

智慧校园教学模式的崛起:优化学习体验

在当今数字化时代,智慧校园教学模式正在成为教育界的热门话题。随着科技的不断发展,传统的教学方式已经无法满足现代学生的需求。智慧校园教学模式以其灵活性、互动性和个性化的特点,正逐渐改变着教育的面貌。 首先,智慧校园教学模…

【C++练级之路】【Lv.24】异常

快乐的流畅:个人主页 个人专栏:《算法神殿》《数据结构世界》《进击的C》 远方有一堆篝火,在为久候之人燃烧! 文章目录 引言一、异常的概念及定义1.1 异常的概念1.2 异常的定义 二、异常的使用2.1 异常的栈展开匹配2.2 异常的重新…

人工智能--深度神经网络

目录 🍉引言 🍉深度神经网络的基本概念 🍈神经网络的起源 🍍 神经网络的基本结构 🍉深度神经网络的结构 🍈 卷积神经网络(CNN) 🍈循环神经网络(RNN&…

AI进阶指南第三课,了解什么是大模型?

一,前言: 在上一讲里面,我主要演示了一下如何通过调用openAI的API来创建一个自己的AI智能客服助理。 看似这种AI智能客服助理似乎已经能够满足一部分企业要求(当然,是在能够成功解析结构的情况下)。 然而…

MYSQL四大操作——查!查!查!

目录 简洁版: 详解版: SQL通用语法: 分类: 1. DDL —库 1.1 查询: 1.2 创建: 1.3 删除 1.4 使用库 2. DDL—表 2.1 查询 2.1.1 查询当前库的所有表: 2.1.2 查询表结构 : 2.1…

ip 命令:比 ifconfig 更强大、更灵活的网络配置工具

ifconfig vs ip:网络配置命令的差异与比较 一、背景二、ip 命令:ifconfig 的替代方案三、ip 与 ifconfig 命令的比较3.1、显示所有网络接口3.2、添加或删除 IP 地址3.3、添加 MAC 地址3.4、设置其他网络接口配置3.5、启用或禁用网络接口3.6、启用或禁用 …

罗德、西圣、猛犸无线麦克风哪个好?罗德、西圣领夹麦克风对比测评

在当今短视频蓬勃发展的时代,越来越多的人投身于短视频创作的浪潮之中,通过镜头捕捉生活点滴,记录工作瞬间。而在谈及视频制作时,不得不提及的是视频录制工具。目前,随着手机影像技术的飞速发展,其视频录制…

实测有效:Win11一键恢复win10经典右键菜单,让Win11右键默认显示更多设置教程!

Win11一键还原win10右键菜单?win11右键菜单怎么改?怎样让Win11右键默认显示更多选项?今天,我要给你们介绍一款专为Windows 11系统设计的小巧工具,它能让你的右键菜单瞬间回到Win10时代,那种熟悉的感觉&…

b端系统项目进度巡检设备物资劳务台账等OA前端UI设计开发

b端系统项目进度巡检设备物资劳务台账等OA前端UI设计开发

C++(构造和析构)

目录 1. 构造函数 1.1 概念 1.2 构造函数的分类 1.2.1 默认构造函数 1.2.2 带参数的构造函数 1.2.3 拷贝构造函数 1.2.4 移动构造函数 2. 析构函数 2.1 概念 3. 每期一问 3.1 上期答案 1. 构造函数 1.1 概念 在C中,构造函数(Constructor&am…

Sqli-labs-maste靶场的下载、配置

目录 下载 配置 配置数据库 配置网站 初始化靶场 下载 GitHub下载地址: 百度网盘:https://pan.baidu.com/s/1jBcKkLzRV8q72rx_0AcznA?pwdxrsc 提取码:xrsc 迅雷链接:https://pan.xunlei.com/s/VNzC0-XAVysQYz4HufgYYze4A…

京东笔试-校招

2022京东数据分析笔试(0821) 一、选择题:30道 1.解决数据不平衡的方法主要有(pca?) 2.等频(等宽)划分问题 3.参数估计:矩估计与极大似然估计的用法,问题分…