STP----生成树协议

目的:解决二层环路问题

跨层封装

广播风暴---广播帧在二层环路中形成逆时针和顺时针转动环路,并且无限循环,最终造成设备宕机,网络瘫痪。

MAC地址表的翻摆(漂移)---同一个数据帧,顺时针接收后记录MAC地址信息,之后,逆时针再记录一遍,如此循环,导致MAC地址表内容一直在变化

多重复数据帧

802.1D生成树

802.1D---标准的STP协议
802.1W---快速生成树---RSTP
802.1S---多生成树协议---MSTP

PVST--思科
VBST--华为

STP基本概念

桥ID---BID

  • 每一台运行了STP协议的交换机都拥有一个唯一的桥ID

  • 桥ID===16bit的桥优先级+48bit的桥MAC地址

  • 默认值=32768,修改时必须为4096的倍数

根网桥--根桥

  • 根网桥指的就是STP树的树根节点

  • 在交换网络中,STP协议开始工作后,第一件事就是在网络中选举出一台设备作为根网桥,根网桥有且只有一个

  • 所有的数据流量再流通的过程中,都会经过根网桥设备

开销(Cost)和根路径开销(RPC)

  • 每一个激活了STP的接口都维护着一个Cost值,接口的Cost主要用于计算RPC。

    • 默认情况下,交换机使用IEEE 802.1t标准计算接口开销值。需要保证交换网络中所有设备的STP开销值算法一致。

接口ID---PID

  • 用来标定同一个设备上不同接口的

  • 16bitPID===4bit接口优先级+12bit接口编号

  • 接口优先级默认值=128,修改时必须为16的倍数

STP报文---BPDU

BPDU---网桥协议数据单元

  • 配置BPDU----协商参数,保活

  • TCN BPDU----拓扑变更通知BPDU

数据帧的目的MAC地址是组播MAC地址:0180-c200-0000

配置BPDU

在交换网络的初始化过程中,每一台交换机都会从自己身上激活了STP协议的接口向外发送配置BPDU

当STP协议收敛完成,只有==根网桥==才会周期性(2s)发送配置BPDU;其他非根网桥只有在收到了根网桥发送的BPDU后,才可以发送自己的BPDU

PVI---协议版本信息:

  • STP=0
  • RSTP=2
  • MSTP=3

BPDU Type---BPDU类型

  • 0x00--配置BPDU
  • 0x80--TCN BPUD
  • 0x02--RSTP或MSTP的BPDU

标记

  • 最高位置为1,则代表TCA,拓扑变更确认标记
  • 最低位置为1,则代表TC,拓扑变更标记

消息寿命

  • 代表该BPDU从发出到现在所经过的设备数量,单位为设备数量
  • 初始值=0,每经过一台交换机,数值+1
  • 存在一个Max Hop参数---最大消息寿命,默认20

    
最大寿命----最大生存时间

  • 缺省值20S,当超过该时间还没有从接口收到BPDU报文,认为该接口所在链路或根网桥故障
TCN BPDU

作用:在网络拓扑发生变化时,向根网桥通知变化的发生

1、本地交换链路发生故障后,STP协议会重新收敛--收敛时间比较长,就会导致在这段时间内,数据通讯发生障碍。为了加快全网交换机的MAC地址表刷新,故障交换机会向本地所有接口发送TCN BPDU报文


2、邻居收到TCN报文后,回复一个TCA标记位置为1的配置BPDU报文,用于保障数据通讯可靠性

  • 这个过程会一直持续到根网桥收到TCN报文

3、根网桥收到TCN报文后,会将自己的MAC地址表的老化时间从300S修改为15S,并向所有接口发送TC标记位置为1的配置BPDU


4、设备收到TC标记位的BPDU,会将本地MAC地址表中所有表项的老化时间临时性修改为15S

STP角色选举

根网桥--RB

  • 选举范围:整个交换网络

  • 选举方法:选举具备最小BID数值的设备。

  • 默认情况下,所有设备的桥优先级都=32768,因此根据桥优先级对比不出根网桥,通过对比最小MAC地址来确定根网桥的位置。----通过配置BPDU

  • 根网桥的地址是可抢占的。---一般情况下,会将根网桥的桥优先级设定为0,来保障根网桥的角色不会被抢占,从而引发STP协议的重新收敛,导致数据不通。

根接口---RP

  • 根接口是每一个非根网桥设备上==所有接口中收到最优BPDU的接口==----每一个非根网桥在STP树上“朝上”的接口,距离根网桥最近的接口

  • 选举范围:每一个非根网桥,只会选举一个接口作为根接口。

最优BPDU比较原则
  • 选择具有最小根桥ID的BPDU
    • 这一条实上是在全网中选举出根网桥际
  • 比较入向配置BPDU的RPC数值,选择最小的接口作为根端口。
  • 比较对端设备的BID,选择BID小的设备所对应的接口作为根端口
  • 对比对端的PID,PID小的端口所对应的端口为根端口
  • 对比本地的PID,PID小的端口称为根端口

指定端口--DP

  • 选举范围:在每条链路(网段)中选举一个指定端口。

    • 该端口是该链路上到达根网桥的最优接口。---距离根网桥最近

    • 负责向该网段(链路)发送BPDU报文

  • 对于非根网桥而言,所有接口中收到最优BPDU的接口将成为该设备的根接口。

    • 然后设备根据收到的最优BPDU,来为设备上的其他接口各自计算一个BPDU报文,并且将其保存在接口中。

    • 然后使用计算出的BPDU报文与接口上收到的BPDU报文进行对比。

      • 如果自己的更优,则本接口为这个链路上的指定端口

      • 如果对方更优,则本接口会成为这个链路上的非指定端口

    • 最优BPDU比较内容

      • RPC

      • BID

      • PID

  • 一般而言,根网桥的所有接口都是指定接口;存在根端口的链路上,对端必然是指定端口

非指定接口-NDP

经过STP计算后,交换机上某些接口既不是根端口,也不是指定端口,则称为非指定端口而STP协议会在逻辑上阻塞非指定端口,从而打破二层环路

被阻塞的端口,既不会发送和接收业务数据,也不会发送BPDU报文,但是可以接收BPDU报文

STP角色选举过程
  1. STP交换机初始启动后,都会认为自己是根网桥,并在发送给其他交换机的BPDU报文中宣告自己为根桥。

    • 当交换机收到网络中其他设备发送的BPDU后,会比较BPDU重的根桥ID和自己的BID

    • 交换机之间不断交互BPDU报文,同时对比BID信息,最终选举出一台BID最小的交换机作为根网桥,其他交换机为非根网桥。

    • 根网桥的角色是可抢占的。当拥有更优BID的交换机加入网络时,网络会重新进行STP计算,选举出新的根网桥。

  2. 在选举出根网桥后,根网桥持续发送BPDU报文,而非根网桥持续接收BPDU报文,并计算自己的BPDU报文发送给其他设备。

  3. 每个交换机根据从自己不同接口收到的BPDU报文中选择出最优BPDU,从而选择出根端口

    • 选举规则---越小越优

      • 比较RPC

      • 比较对端的BID

      • 比较对端的PID

      • 比较本地的PID

  4. 每台交换机的每一条链路选举一个指定端口

    • 交换机将本接口与本接口收到的BPDU进行对比,若本地BPDU更优,则本接口称为指定端口。

    • 比较规则---越小越优

      • RPC

      • BID

      • PID

  5. 交换机身上剩余端口成为非指定端口

    • 非指定端口被STP协议在逻辑上阻塞,从而构造出STP树。

    • 阻塞端口不能转发由终端设备产生并发送的数据帧,也不能转发BPDU,但是可以接收和处理BPDU报文。

根网桥的选举,因为STP协议的一切工作都是基于根网桥的位置而定的,如果根网桥位置选举不恰当,那么流量走向异常

解决方案----三点合一(网关所在地、STP树根所在地、流量汇聚之地)

STP的接口工作状态

  • 阻塞

    • 设备激活STP协议后进入的第一个状态

    • 不能收发业务数据、不能学习MAC地址、不能发送BPDU,但是可以接收BPDU

    • 目的:将二层网络中的所有数据报文全部清空。

    • 每个设备需要在阻塞状态停留20S时间。进入下一个状态

  • 侦听

    • 目的:完成STP的所有角色选举过程。

    • 接口可以收发BPDU报文,但是不能收发业务数据,也不能学习MAC地址

    • 需要在侦听状态停留一个转发延迟时间(15S)

    • 当转发延迟时间超时后,跟端口和指定端口会进入下一个状态,而非指定端口会退回到阻塞状态

  • 学习

    • 目的:学习MAC地址,从而填充MAC地址表项

    • 可以收发BPDU报文,可以学习MAC地址,不能收发业务数据

    • 需要在学习状态停留一个转发延迟时间(15S)

  • 转发

    • 可以正常收发业务数据和BPDU报文。

    • 只有根端口和指定端口可以处于转发状态

STP收敛时间
  • 首次收敛---50S

  • 结构突变

    • 根网桥故障---50S

    • 直连链路故障---30S

      • 立即将端口状态切换到侦听

    • 非直连链路故障---50S

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/21851.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GUN compiler collection源代码编译过程

第一部分: 学习kernel需要了解编译的一些过程,为了详细理解GCC编译过程的原理,动手做了个sy,记录如下,有需要的童鞋可以参考。 1.环境:(均可,二次环境并非是WSL版本) r…

大模型应用框架-LangChain

LangChain的介绍和入门 💥 什么是LangChain LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是…

一维时间序列信号的奇异小波时频分析方法(Python)

最初的时频分析技术就是短时窗傅里叶变换STFT,由于时窗变短,可供分析的信号量减少,采用经典的谱估算方法引起的误差所占比重会增加。且该短时窗一旦选定.则在整个变换过程中其时窗长度是固定的。变换后的时频分辨率也即固定&#…

第十五届蓝桥杯物联网试题(省赛)

这个省赛题不算难,中规中矩,记得看清A板B板,还有ADC的获取要配合定时器

视频修复工具助你完成高质量的视频作品!

在短视频发展兴起的时代,各种视频层出不穷的出现在了视野中,人们已经从追求数量转向追求质量。内容相同的视频,你视频画质好、质量高的更受大家欢迎,那么如何制作高质量、高清晰度的视频呢?与您分享三个视频修复工具。…

Nios II 实现流水灯实验

Nios II 实现流水灯实验 一.硬件设计1.新建Quartus项目2. 设计Nios ii 二.软件设计 前言 实验目标: 学习 Quartus 、Platform Designer、Nios-II SBT 的基本操作;初步了解 SOPC 的开发流程,基本掌握 Nios-II 软核的定制方法;掌握 …

【Go语言精进之路】构建高效Go程序:零值可用、使用复合字面值作为初值构造器

🔥 个人主页:空白诗 文章目录 引言一、深入理解并利用零值提升代码质量1.1 深入Go类型零值原理1.2 零值可用性的实践与优势1.2.1 切片(Slice)的零值与动态扩展1.2.2 Map的零值与安全访问1.2.3 函数参数与零值 二、使用复合字面值作为初值构造器2.1 结构体…

LINUX系统编程:信号(1)

目录 什么是信号? 为什要有信号呢? 进程接受信号的过程 1.信号的产生 1.1kill命令产生信号 1.2键盘产生信号 1.3系统调用接口 1.3.1killl() 1.3.2raise() 1.3.3abort() 1.4软件条件 1.5异常 1.6对各种情况产生信号的理解 1.6.1kill命令 1…

突破 LST/LRT 赛道中心化困境,Puffer Finance 何以重塑以太坊再质押未来

纵观过去的 2023 年,LST 赛道竞争进入“白热化”状态。去中心化、DeFi 增强、全链化成为市场争夺关键词,诸多 LST 赛道老牌项目纷纷陷入“中心化矛盾”,指责对方在以太坊去中心化进程中的不利作为。 在这样的竞争情形下,以太坊联…

SpringBoot登录认证--衔接SpringBoot案例通关版

文章目录 登录认证登录校验-概述登录校验 会话技术什么是会话呢?cookie Session令牌技术登录认证-登录校验-JWT令牌-介绍JWT SpringBoot案例通关版,上接这篇 登录认证 先讲解基本的登录功能 登录功能本质就是查询操作 那么查询完毕后返回一个Emp对象 如果Emp对象不为空,那…

【数据结构】详解堆的基本结构及其实现

文章目录 前言1.堆的相关概念1.1堆的概念1.2堆的分类1.2.1小根堆1.2.2大根堆 1.3堆的特点堆的实用场景 2.堆的实现2.1初始化2.2插入2.3堆的向上调整2.4删除2.5堆的向下调整2.6判空2.7获取堆顶元素2.8销毁 3.堆排序3.1实现3.2堆排序的时间复杂度问题 前言 在上一篇文章中&#…

TMS320F280049 ECAP模块--总览(0)

ECAP 特性: 4个32bit的事件时间戳寄存器; 4个连续时间戳捕获事件的边沿极性可选上升沿、下降沿 4个事件中每个都能触发中断 4个事件都能做单词触发 可以连续捕获4个事件 绝对的捕获时间戳 差异模式捕获 不使用捕获模式时,可以配置输出…

Python 图书馆管理系统 有GUI界面 【含Python源码 MX_031期】

使用python3,PyQt5,Sqlite3数据库搭建 主要功能: 用户注册、登录、修改密码、用户管理存储图书信息、采购增加和淘汰删除功能、租借功能实现图书采购、淘汰、租借功能。实现查询图书信息、采购和淘汰、库存、和租借情况实现统计图书的采购、…

JavaScript 基础 - 对象

对象 对象是一种无序的数据集合&#xff0c;可以详细的描述描述某个事物。 注意数组是有序的数据集合。它由属性和方法两部分构成。 语法 声明一个对象类型的变量与之前声明一个数值或字符串类型的变量没有本质上的区别。 <script>let 对象名 {属性名&#xff1a;属性值…

accelerate笔记:实验跟踪

Accelerate支持七种集成的跟踪器&#xff1a; TensorBoardWandBCometMLAimMLFlowClearMLDVCLive要使用这些跟踪器&#xff0c;可以通过在 Accelerator 类的 log_with 参数中传入所选类型来实现 from accelerate import Accelerator from accelerate.utils import LoggerTypeac…

高通开发系列 - ubuntu中的docker安装debian镜像

By: fulinux E-mail: fulinux@sina.com Blog: https://blog.csdn.net/fulinus 喜欢的盆友欢迎点赞和订阅! 你的喜欢就是我写作的动力! 返回:专栏总目录 目录 概述当前状态Ubuntu中安装dockerDebian镜像Debian容器中操作更改Debian源安装应用程序

28 _ WebComponent:像搭积木一样构建Web应用

在上一篇文章中我们从技术演变的角度介绍了PWA&#xff0c;这是一套集合了多种技术的理念&#xff0c;让浏览器渐进式适应设备端。今天我们要站在开发者和项目角度来聊聊WebComponent&#xff0c;同样它也是一套技术的组合&#xff0c;能提供给开发者组件化开发的能力。 那什么…

python 各种画图(2D 3D)-1 _matplotlib 官方网站笔记

背景 需利用python进行3D可视化处理&#xff0c;用于分析python得到的数据的正确性。 知识学习 python高阶3D绘图---pyvista模块&#xff0c;mayavi模块&#xff0c;pyopengl模块&#xff0c;MoviePy模块基础使用-CSDN博客 python用于3D绘图的模块比较多&#xff0c;pyvist…

目标2亿欧元!四年两次募资,全球最早专注于量子投资的Quantonation再次加码

Quantonation Ventures 是全球第一家专注于深度物理和量子技术的早期风险投资公司。4月10日&#xff0c;该公司宣布其第二只专门用于量子技术的早期基金 Quantonation II 首次募资完成&#xff0c;目前已募资 7000 万欧元&#xff0c;而目标为 2 亿欧元。 首次募资就募到了将…

《QT从基础到进阶·四十一》无法解析的外部符号及生成事件加入QT打包命令报错问题

其他无法解析的外部符号&#xff1a; 无法解析的外部符号 "public: virtual struct QMetaObject const * __cdecl ML_AddinManger::metaObject(void)const "… 无法解析的外部符号 “public: virtual void * __cdecl ML_AddinManger::qt_metacast(char const *)” (?…