自动驾驶控制算法

本文内容来源是B站——忠厚老实的老王,侵删。

三个坐标系和一些有关的物理量

使用 frenet坐标系可以实现将车辆纵向控制和横向控制解耦,将其分开控制。使用右手系来进行学习。

 一些有关物理量的基本概念:

运动学方程

建立微分方程

主要是弄清前轮转角δf如何影响侧向位移航向角

运动学模型是不考虑轮胎变形,适用于轮胎变形较小的情况下,比如说低速时;动力学模型是考虑轮胎变形的因素。

运动学方程的建立如下:

上面的式子只体现了质心速度v对φ、X、Y的影响,没有体现前轮转角对X、Y、φ的影响,需要进一步的推导,最后一个式子是一个理论力学的知识,也就是一个刚体的角速度等于该刚体的线速度比线速度到速度瞬心的距离。严格来说V/R应该是航向角速度,也就是φ点+β点=V/R,但是运动学方程中默人β点是0,所以运行学方程假设过多,它也只适合低速情况下,高速情况不适用。

由正弦定理可得:

由于质心的位置是变化的,所以a和b的值也是不固定的,使用轴距L来表示R与δf和δr的关系。

经过化简之后方程如下:

最终有:

运动学方程只有在使用tanδ =L/R时需要或者坐标变换时需要,一般用不到,因为其简化过多。适合低速时,因为低速时轮胎变形不大,但高速时必须要考虑轮胎变形的影响。

由上图也可以看出在运动学方程中,纵横向控制是耦合在一起的,不能解耦控制。 

动力学方程

frenet坐标系

特点:考虑了轮胎的动力学特性;选取frenet坐标系时,可以将纵向控制和横向控制进行解耦。

首先frenet坐标系方程如下:

上式子中使用了tanδ =L/R, 这个是由运动学方程推导而来,但在这里也依然适用,因为一般和横摆角相比,质心侧偏角都很小,因为质心侧偏角很大时车辆处于一种很危险的工况,不太可能会发生。

最后可以看出在frenet中纵向控制是可以解耦的(因为aτ只和速度v有关),而横向控制时是不能解耦的(因为an与v有关)。但当纵向控制稳定后,v几乎是不变的,此时an也只与δ有关。

此时的目标变成:将动力学方程和frenet坐标结合在一起就可以实现纵横向解耦控制。

上式子将纵向位移设置成是s,横向位移设置成d,aτ和s一个简单的二阶导数关系,也即使纵向控制相对简单,但是横向控制和方向盘转角不是简单的导数关系。的关系在汽车理论中详细的解释,但是是在车辆坐标下建立起来的,所以接下来的任务第一步:在车辆坐标系下建立车辆动力学模型得到第二步:再建立y和d的关系实现坐标变换到frenet坐标系中。第三部:最终得到的关系。

 第一步:二自由度车辆动力学模型

二自由度车辆动力学模型假设前轮转角δ较小,假设vx是一个常数,也就是它不管纵向控制,只管横向控制。

推导图文如下:

 如下可以得到状态空间方程:其中符号和书中略有不用,请类比:(其中使用了β≈vy/vx)这里将前轮转角作为输入,车身速度和横摆角速度作为状态空间。

至此得到车辆二自由度运动学微分方程,以及其状态空间的表达形式。 可以反映出前轮转角怎样影响侧向速度和横摆角。

第二步:坐标变化

这里的u是前轮转角,在某一时刻规划得Xr以及都是已知的,并且动力学方程也是已知的,最终会得到一个关于误差的微分方程,控制目标就是选择一个合适的u使得X和Xr尽量接近。

 选择合适的代价函数使得误差最小:

例如一下三种选择:

第一个是简单的使得误差最小,第二个是是的误差最小的同时也使得输入代价u最小;第三个是对误差和输入的各个分量配以权重。可将第三个代价函数(LQR)简化写成以下形式:

详细转换过程解析,需要注意的是是在自然坐标系上的: 

 注:v是车身质心的速度,投影速度大小是S点,实际速度大小是v,这是代表速度大小,不代表速度方向,方向是横向控制的问题。这里的学习只考虑横向控制(也就是只考虑航向误差)。

注:v是质心速度,θ是质心速度与绝对坐标系X轴的夹角也就是航向角,车身坐标系x轴是沿着车辆横摆角方向,τ是沿着质心速度v的方向。τ和车辆坐标系x轴差了一个质心侧偏角。蓝线X是车辆的实际位置和O的距离(车辆的真实位矢),Xr是参考点和O的距离(投影位矢)。

其中d是一个标量,不是一个向量,它和状态空间中的变量车身的侧向速度横摆角速度没有直接关系此时想将d与状态空间方程联系起来,对d进行求导运算求导时需要注意nr不是一个常向量,它的大小是1,但是方向是随着轨迹的变化而变化。

向量位移分量的基本概念:

上图初始位矢是r,经过dt的时间它的位矢是r+dr,根据向量的三角形法则,dr就是蓝色的线。

向量求导基本概念解释如下:

上图中最后的等式是dr与ds大小趋近于相等,也就是说它两是等价无穷小, 其中τ是r的切线方向的单位向量。

可以进一步的写成如下:

同样的对于nr来说一样有:

 其中ds/dt是s点,其中dnr/ds要根据向量微积分frenet公式(其中k是曲率)进行变换,带入可得。进一步将d点化成下面这样,其中τr和nr向量垂直,内积是0,x-xr就是nr乘d,结果如下:

 由可进一步得到,这样就可以建立起来d点与v、θ和θr之间的关系。

算S点,还是使用式子这个关系来求,两边进行求导可得:

对其进行两边同时点乘以τ可得(τ·τ=1;τ·n=0):

最终可得:

这两个公式十分重要,无人驾驶理论的起点,其中θ是航向角,但是上面的公式和vy还有φ没有直接联系,将θ=φ+β带入可得:

使用同样的方法可将s点也化成与vx和vy的形式,但是s点是纵向控制的内容。到这里就已经将d与φ和vy联系起来了。

d是横向误差,,因为航向误差应该是θ-θr,也就是φ+β-θr,但这里φ是横摆角。

可以将上面的公式改写成下面这样:

这里假设vx是一个常数。

这里将θr两点是一个较小量,可以将它省略去,因为一般道路的曲率很小,,不会特别曲折,所以对于θr我们只考虑到一阶导数位置,二阶可以直  接判断它是一个较小量忽略。可进一步引出下面的微分方程组:

将上面的微分方程组带入到之前推导出来的二自由度车辆动力学模型中可得:\

上面的两个方程就是把原来和vy与φ有关的车辆动力学方程转化成误差的微分方程。将其简写成以下这样的形式,写成线性微分方程组的形式:

 

 这样就通过坐标变换和车辆动力学方程将误差微分方程组建立起来了。

 使用LQR对建立的模型对模型进行控制

 下面使用一个离散型的LQR来选出一个合适的u使得误差最小,如下:

 使用dlqr就延伸出来两个问题:

 

离散化的方法有:①向前欧拉法;②中点欧拉法 ;

(1)向前欧拉法

 不同的方法对ξ的解释不同,如下:

向前欧拉法认为X(ξ)=X(t);向后欧拉法认为X(ξ))=X(t+dt); 中点欧拉法认为是X(ξ)=[X(t)+X(t+dt)]/2。其中中点欧拉法精度要比向前和向后精度要高一点。

回到本例子中,X(ξ)使用中点欧拉法,u(ξ)使用向前欧拉法,因为u(t+dt)未知。如下:

最后一步中u(t)的系数中省略了,是因为dt时间间隔是一个较小量,这样可以简化运算,进一步可以将上式子写成如下形式:

系统离散后的方程如上式子。下面使用dlqr进行求解

这里的A对应于上面的A杠,B对应于上面的B杠。将∞写成n,使n趋于∞,具体做法如下:

这里没有没有Un的转置乘以R再乘以Un的原因是由约束决定的,Xn就是要比Un多一项,如下:

理解了为什么没有 Un的转置乘以R再乘以Un,使用拉格朗日乘子法写出最终的代价函数,如下:

 代价函数对各变量求偏导,有:

 最终算出得到的是:

 上面的式子由式②中R和B已知,但是λk+1未知,如果算出λk+1已知,那么就可以求出uk。由式④中可可知λn和Xn有关,Xn是已知的,那么λn也就已知了,可由式③和式①逆推出λn-1,是最从最末端n往前逆推的。逆推关系如下:

将⑧式与④式进行比较,可以发现⑧式也可以写成 的形式。  

可以将求解λk的问题转换成求解Pk的问题。因为由式②可知uk和λk+1直接相关,只要求出Pk+1,就可以求出λk+1,进而求出uk。接下来求Pk。

 黎卡提方程在迭代几十次之后一般就会收敛与某一个常值,对于求解是很有帮助的,不用迭代无数次。也就是迭代一定次数后,黎卡提方程实际上是

由上面的黎卡提方程可知:Pn=Q,再由Pn进而递推到Pn-1,依次类推。Pk得到后,Uk就已知了:

 所以最终步骤是P先取初值Q,在带到黎卡提方程中进行迭代,P收敛之后再将其带入到u的表达式中,其中K=

在matlab中lqr的包是。输入是A、B、Q、R,就可以计算出k、S、E。在有的书上黎卡提是写成,它其实是和上面的黎卡提方程式一样的,可根据矩阵求逆引理转换:

 一般推荐使用下面的黎卡提方程,也就是,因为使用这个形式的黎卡方程后半部分(R+BTPB)-1是一个1×1的矩阵求逆,但是使用上面的黎卡提方程,也就是,这形式后半段(I+BR-1BTPk)-1是一个4乘4的矩阵,相对而言上面的1×1矩阵来说不好求逆。

对LQR算法进行总结:

勘误:这里的k的值是: 

LQR的核心就是求解黎卡提方程,求出P之后就可以求出最优的控制量U;如果系统是连续的,可以使用连续LQR算出K出来,也可以将这个连续系统离散化再使用离散LQR算出K值,这两个K值应该是非常接近,但是不可能完全一样。将u=-kx这样的控制称为全状态反馈控制。

前馈控制

这里加前馈控制是为了解决之前上面忽略掉的Cθr点。没有前馈只有反馈控制的话,也就是只用LQR的话,如下:

 只有LQR控制时,err和err点不可能同时为0,当P经过一定迭代次数后会稳定下来,u=-kx也是一个固定的值,此时err点=0,err≠0。引入前馈控制可以消除稳态误差。

由LQR引起的稳态误差是:

 引入前馈控制后:

 这里需要注意B是一个列向量,不能求逆,所以求解δf时不能简单的是B^{-1}C\Theta·。可以借助数学软件进行求解。求解出来的err如下所示:

进而可以求解出来δf

其中k3是反馈矩阵K=(k1,k2, k3, k4)中的k3,所以前馈δf的计算是依赖于反馈中的K矩阵,所以要先算反馈,再算前馈。

由上面求解出来的err矩阵可得:

可知eφ于δf和k的影响,也就是无论前馈和反馈取何值,eφ≠0。前面学习学习过eφ=φ-θr,它不是航向误差,航向误差是φ+β-θr,所以eφ=φ-θr的稳态误差应该是β。接下来要看这个式子是不是β。如下:

使用ed=φ-θr化简后有

曲线曲率的定义是dθ/ds,,所以,在实际规划的路径中道路的曲率的绝对值是远远小于1,,可对S点进行简化,(这里vy是一个小量,sineφ也是一个小量,相乘是一个高阶的小量,可以将其近似成0)。所以,再将其带入到eφ中可得:

之前在上面讲过,无漂移时vy远远小于1,是一个较小量,如下:

在将其带入到上一步改写的eφ当中去可得

由以下关系进一步化简:

可进一步化简:

其中mr是车辆后半部分的质量,Fy是后轮侧向力之和。mray就是单个后轮的侧向力,Cr是侧偏刚度,所以αr是后轮的侧偏角。

还可以进一步化简:

由于转弯半径很大,所以绿色部分可以近似看出是转弯半径,紫色的长度是后轴轴距到质心的距离,转弯半径是远远大于b的,所以γ=b/R,(弧度制定义)。

至此证得eφ就等于-β。

 所以只需要用前馈控制把横向误差ed趋近于0就可以,前馈δf就是

令θr=kvx可进一步化简:

最后可以算出u:

通过LQR和前馈控制就可以将横向误差控制为

离散轨迹的误差计算

由上一节可知各个横向误差的计算公式:

从上面的式子可以看出计算误差时都需要知道投影点的信息,如下: 

 剩下的几个自变量都是已知的,可以通过车辆的传感器获取到,如下:

 所以只需要知道投影点信息就可以计算出误差:、

这里需要需要注意如果规划出来的路径是连续的,可能会导致投影点不唯一,如下:

如果轨迹比较简单,则投影点唯一,如图1和图2,如果规划出来的路径较为复杂时,投影点就可能不唯一:

所以如果曲线是连续的话,求投影点可能会很麻烦,并且要处理多值问题,所以使用离散的规划点会容易很多,使用离散轨迹点的误差计算步骤如下:

每个离散的规划点上的信息(x,y,θ,k)都是已知的 。

τm轨迹切向的向量,坐标点位置是(cosθm,sinθm),nm轨迹法向的向量,坐标点位置是(-sinθm,cosθm)。ed近似于x-xm在法向方向上的分量,es近似于x-xm这两个向量相减在切向方向上的分量。这种近似是在曲率等于0时,是没有误差的,意味着规划出的轨迹是直线的话,只需要很少的规划点,在曲率比较大的轨迹出需要比较密的规划点。

横向控制算法和流程图

流程图如下: 

其中大K是LQR计算出来的K值,小k是真实的车在规划轨迹上的投影点的曲率。

具体的算法:

在自动驾驶实际应用中,对实时性要求很高,一般不是掉包计算出来的吗,都是查表查出来的,这是一种空间换时间的例子。 在低速情况下,轮胎的侧偏刚度变换不大,大K的计算主要考虑vx的值这个表就是一个一维的表(查vx算K,进而求解LQR),这个查表法同样适合高速情况,在高速情况下,轮胎侧偏刚度变换大,就需要考虑轮胎侧偏刚度和vx,此时就是根据vx和侧偏刚度来求解大K(表就是一个三维的表)。

第三步是重中之重:

 其中容易出出错的是第九步,因为φ加上一个2π还是φ,θr加上一个2π还是θr,但是eφ加上2π就会出现一个很大的幅度,导致控制失效。

 有了上面五个模块,还要有一个预测模块,因为车辆的运动本身会有惯性,还有就是例如下面的情况:

上面的第二种情况,算法控制是方向盘不会动,它只有在下一个时刻知道有误差时才会动方向盘,但是没有预测模块时,它在当前时刻是不会改变方向盘的转角的,所以算法控制时具有一定的滞后性。 

当加了预测模块的算法框图:

上述两种情况加了预测后,如下:

如果没有预测时,d不为零,那么u不等0,方向盘转角会发生改变,如果有预测,比如预测点是xpre,该预测点与轨迹重合,u=0,就不打方向盘。

绿色点是预测的点,此时预测点和规划的轨迹不重合,有距离d,所以会打方向盘。 

预测算法写法:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/2021.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

探索数学语言模型的前沿进展——人工智能在数学教育和研究中的应用

数学一直被认为是科学的基石,对于推动技术进步和解决现实世界问题具有重要意义。然而,传统的数学问题解决方式正面临着数字化转型的挑战。MLMs的出现,预示着数学学习和研究方式的一次革命。 MLMs,包括预训练语言模型(…

不安全软件,2024 年供应商该如何应对漏洞?

关键在于代码 使用专用工具和系统分析产品代码编写的各个阶段。 与安全研究人员合作 理想情况下,每个供应商都应该有自己持续的漏洞赏金计划,以测试基础设施、软件发布流程和最终产品。这将有助于在真正的攻击发生之前发现漏洞,保护客户。…

丰田是如何用精益理念改变制造业的?

丰田,这个全球知名的汽车制造商,不仅以其高质量的产品赢得了消费者的信赖,更以其独特的精益理念深刻改变了整个制造业的面貌。那么,丰田究竟是如何用精益理念引领制造业变革的呢?天行健精益管理培训公司解析如下&#…

思科 Packet Tracer 实验八 DHCP基本配置(以路由为中继)

一、实验目的 了解思科网络设备的配置基本特点及 IOS 命令基本操作方法 了解DHCP的工作原理及基本配置 二、实验过程 1) 实验拓扑如下: 2)由于使用DHCP‘协议动态配置ip,所以除了DHCP服务器和路由器接口外其他的主机,服务器的i…

LeetCode 热题 100 Day04

矩阵相关题型 Leetcode 73. 矩阵置零【中等】 题意理解: 将矩阵中0所在位置,行|列置换为全0 其中可以通过记录0元素所在的行、列号,来标记要置换的行|列 将对应位置置换为0 解题思路: 第一个思路: 可以…

CSRF 跨站请求伪造

CSRF漏洞 CSRF(Cross-site request forgery)跨站请求伪造,也被称为“One Click Attack”或者Session Riding,通常缩写为CSRF或者XSRF,是一种对网站的恶意利用。尽管听起来像跨站脚本(XSS)&…

[Linux][多线程][二][线程互斥][互斥量][可重入VS线程安全][常见锁概念]

目录 1.线程互斥1.互斥相关背景概念2.多个线程并发的操作共享变量,会带来一些问题3.互斥量mutex 2.互斥量的接口1.初始化互斥量2.销毁互斥量3.加锁4.解锁5.使用 -- 改善上面代码 3.互斥量实现原理探究1.加锁是如何保证原子性的?2.如何保证锁是原子性的&a…

【计算机组成原理】浮点运算方法和浮点运算器

浮点加法、减法运算 浮点数加减法的步骤结合题目分析步骤 浮点数加减法的步骤 ① 0 操作数检查 ② 比较阶码大小,完成对阶 ③ 尾数进行加减法运算 ④ 结果规格化 ⑤ 舍入处理 ⑥ 判断结果是否溢出 结合题目分析步骤 例:设 x 2010 0.11011011&#x…

Hadoop3:HDFS、YARN、MapReduce三部分的架构概述及三者间关系(Hadoop入门必须记住的内容)

一、HDFS架构概述 Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。 1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件…

springboot整合mybatis-puls登陆注册

目录 创建springboot项目 目录结构: 启动类 测试类 idea建表 pom文件 编写yml文件 qq邮箱设置 登陆注册代码 编写持久层(Dao) 注册代码 业务层 业务实现类 mapper 控制层 前端代码 注册页面 邮件正文: 登录代码 控制层 业务层&#…

索引【MySQL】

文章目录 什么是索引测试表 磁盘和 MySQL 的交互了解磁盘MySQL 的工作原理Buffer Pool 理解索引引入Page 的结构页内目录(Page Directory)多页情况B 树和 B树聚簇索引和非聚簇索引 主键索引创建 唯一索引主要特点与主键索引的区别使用场景创建 联合索引工…

WEB攻防-ASP安全-MDB下载

MDB下载漏洞主要涉及到早期ASPAccess构架的数据库文件。当Web站点提供文件下载功能时,如果没有对下载请求进行充分的验证和过滤,或者服务器配置不当,就可能产生文件下载漏洞。攻击者可以利用这个漏洞,通过修改请求参数或尝试猜测或…

YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | MimicLoss(在线蒸馏 + 离线蒸馏)

一、本文介绍 这篇文章给大家带来的是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容&#…

CTF-reverse-simpleRE(base64变表逆向)

题目链接 NSSCTF | 在线CTF平台 题目详情 [HUBUCTF 2022 新生赛]simple_RE 解题报告 下载得到的文件使用ida64分析,如果报错就换ida32,得到分析结果,有main函数就先看main main函数分析 main函数的逻辑看下来十分简单,因此关键…

Redis入门到通关之Redis数据结构-ZSet篇

文章目录 ZSet也就是SortedSet,其中每一个元素都需要指定一个 score 值和 member 值: 可以根据score值排序后member必须唯一可以根据member查询分数 因此,zset底层数据结构必须满足键值存储、键必须唯一、可排序这几个需求。之前学习的哪种编…

STM32自动光控窗帘程序+Proteus仿真图 H桥L298驱动电机

目录 1、前言 2、仿真图 3、源程序 资料下载地址:STM32自动光控窗帘程序Proteus仿真图 H桥L298驱动电机 1、前言 基于STM32F103设计的智能光控窗帘,包含STM32芯片、光敏电阻、LCD1602显示屏、电机驱动控制模块等。 备注:通过ARM内部的…

管理 Python 项目的艺术:在 PyCharm 中使用虚拟环境(以BPnP为例)

在 PyCharm 中使用虚拟环境对于 Python 项目开发具有多方面的重要作用,这些作用体现在提升项目管理的效率、保障代码的可运行性以及维护项目的长期稳定性等方面。以下是使用虚拟环境的几个关键好处: 1. 依赖管理和隔离 虚拟环境允许每个项目拥有…

Hadoop3:大数据生态体系

一、技术层面 通过下面这张图,我们可以大概确定,在大数据行业里,自己的学习路线。 个人认为,Hadoop集群一旦搭建完工,基本就是个把人运维的事情 主要岗位应该是集中在数据计算层,尤其是实时计算&#xff…

单调栈(C/C++)

引言: 单调队列和单调栈都是一种数据结构,应用十分广泛,在蓝桥杯、ICPC、CCPC等著名编程赛事都是重点的算法,今天博主将自己对单调栈与单调队列的理解以及刷题的经验,用一篇博客分享给大家,希望对大家有所…

【UI】element-ui的el-dialog的遮罩层在模态框的前面bug

最近在写element ui 的时候使用dialog组件,偶然出现了这种情况 原因: 是因为遮罩层插入进了body标签下,z-index高于当前父元素。 解决:在el-dialog标签里加上:modal-append-to-body"false"就可以了。 饿了么官网文档&a…