STL中list的模拟实现

目录

list模拟实现

list节点

list的push_back()函数

list的迭代器操作(非const)

list的迭代器操作(const)

list迭代器const 非const优化

list的insert()函数

list的erase()函数

list的pop_back() push_front() pop_front()

list的clear()函数

list的empty()_Init函数与构造函数

list的拷贝构造

list的析构函数

list的赋值运算符重载

list的initializer_list

 项目文件

4.list与vector的对比


list模拟实现

list节点

首先看节点:list底层是一个带头双向循环链表

template <class T>
class list_Node{
public:T _data;list_Node<T>* _prev;list_Node<T>* _next;list_Node(const T& data):_data(data),_prev(nullptr),_next(nullptr){}
};
template <class T>
class list{
public:typedef list_Node<T> Node;list(){_head = new Node(T());//不能使用0初始化,因为类型不确定_head->_next = _head;_head->_prev = _head;}private:Node* _head;
}; 
}

list的push_back()函数

void push_back(const T& x){Node* newnode = new Node(x);Node* tail = _head->_prev;tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;//insert(end(), x);
}

list的迭代器操作(非const)

list在物理上空间不是连续的,因此不可以像vector一样使用

typedef Node* iterator

Node* 不符合遍历的行为

List_iterator封装Node*

再通过重载运算符控制它的行为

因此这里我们可以使用一个类来封装使用

template <class T>
class List_iterator{
public:typedef list_Node<T> Node;typedef List_iterator Self;//不需要写析构函数,这个节点又不是这个类的//一个类一般不写析构,也就不需要显示写深拷贝List_iterator(Node* node):_node(node){}//日期类返回一个日期,那么迭代器返回一个迭代器//++itSelf& operator++(){_node = _node->_next;return *this;}//--itSelf& operator--(){_node = _node->_prev;return *this;}//it++Self operator++(int)//加参数 区分前置后置{Self tmp(*this);_node = _node->_next;return tmp;}//it--Self operator--(int){Self tmp(*this);_node = _node->_prev;return tmp;}T& operator*(){return _node->_data;}bool operator!=(const Self& it){return _node != it._node;}bool operator==(const Self& it){return _node == it._node;}T* operator->(){return &(_node->_data);}
private:Node* _node;};

注意: T* operator->()的意义,比如下面的例子

    struct Pos{int _x;int _y;Pos(int x = 0,int y = 0):_x(x),_y(y){}};nanyi::list<Pos> ls2;ls2.push_back(Pos(100,200));ls2.push_back(Pos(300,400));ls2.push_back(Pos(500,600));nanyi::list<Pos>::iterator it1 = ls2.begin();while (it1 != ls2.end()) {//cout << (*it1)._x << ":" << (*it1)._y << endl;// 为了可读性,省略了一个->cout << it1->_x << ":" << it1->_y << endl;//cout << it1.operator->()->_row << ":" << it1.operator->()->_col << endl;++it1;}cout << endl;return 0;

list类中

iterator begin(){//iterator it(_head->_next);//return it;return iterator(_head->_next);
}iterator end(){return iterator(_head);
}

list的迭代器操作(const)

const迭代器不能在普通迭代器前加const修饰,比如这种情况

const迭代器的目标是 迭代器本身可以修改,指定的内容不能修改,类似const T* p

一旦加了不可以使用++it

因此我们重新写一个const类进行封装,我们只需改变解引用即可,使得指向内容不能修改

template <class T>
class const_List_iterator{
public:typedef list_Node<T> Node;typedef const_List_iterator Self;//不需要写析构函数,这个节点又不是这个类的//一个类一般不写析构,也就不需要显示写深拷贝const_List_iterator(Node* node):_node(node){}//日期类返回一个日期,那么迭代器返回一个迭代器//++itSelf& operator++(){_node = _node->_next;return *this;}//--itSelf& operator--(){_node = _node->_prev;return *this;}//it++Self operator++(int)//加参数 区分前置后置{Self tmp(*this);_node = _node->_next;return tmp;}//it--Self operator--(int){Self tmp(*this);_node = _node->_prev;return tmp;}const T& operator*(){return _node->_data;}bool operator!=(const Self& it){return _node != it._node;}bool operator==(const Self& it){return _node == it._node;}const T* operator->(){return &(_node->_data);}
private:Node* _node;}; 

list类中

   const_iterator begin()const{return const_iterator(_head->_next);}const_iterator end() const{return const_iterator(_head);}

代码是没有问题的,但是我们也可以发现,这样非常的冗余 有些函数是没有变化的,确多写了一遍,有没有什么办法能解决这种冗余呢?

他们的区别主要是返回参数不同,返回是否有const对象

因此我们可以增加模版参数,让编译器完成任务

list迭代器const 非const优化

template <class T,class Ref,class Ptr>
class List_iterator{
public:typedef list_Node<T> Node;typedef List_iterator Self;//不需要写析构函数,这个节点又不是这个类的//一个类一般不写析构,也就不需要显示写深拷贝List_iterator(Node* node):_node(node){}//日期类返回一个日期,那么迭代器返回一个迭代器//++itSelf& operator++(){_node = _node->_next;return *this;}//--itSelf& operator--(){_node = _node->_prev;return *this;}//it++Self operator++(int)//加参数 区分前置后置{Self tmp(*this);_node = _node->_next;return tmp;}//it--Self operator--(int){Self tmp(*this);_node = _node->_prev;return tmp;}Ref operator*(){return _node->_data;}bool operator!=(const Self& it){return _node != it._node;}bool operator==(const Self& it){return _node == it._node;}Ptr operator->(){return &(_node->_data);}
private:Node* _node;};

list的insert()函数

    iterator insert(iterator pos , const T& x){Node* cur = pos._node;Node* newnode = new Node(x);Node* prev = cur->_prev;newnode->_next = cur;newnode->_prev = prev;prev->_next = newnode;cur->_prev  = newnode;return iterator(newnode);}

由于不牵涉扩容问题 这里不存在迭代器失效

 

list的erase()函数

    iterator erase(iterator pos){assert(pos);Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;// prev cur nextprev->_next = next;next->_prev = prev;delete cur;cur = nullptr;return iterator(next);}

这里存在迭代器失效,因此我们和库里一样返回下一个节点迭代器

list的pop_back() push_front() pop_front()

    void pop_back(){erase(--end());}void push_front(const T& x){insert(begin(), x);}void pop_front(){erase(begin());}

list的clear()函数

    void clear(){auto it = begin();while (it != end()) {it = erase(it);//不能++it,首先会迭代器失效,其次erase会自动返回下一个位置}}

list的empty()_Init函数与构造函数

由于我们经常使用申请头节点,因此我们把头节点封装成一个函数,便于调用

    void empty_Init(){_head = new Node(T());//不能使用0初始化,因为类型不确定_head->_next = _head;_head->_prev = _head;}list(){empty_Init();}

list的拷贝构造

如果我们不显示写拷贝构造 ,那么编译器会默认生成一个浅拷贝

浅拷贝生成的ls2,与ls1的地址相同,对ls1操作也会对ls2有影响

因此我们需要显示的写拷贝构造

    //拷贝构造list(const list<T>& ls){empty_Init();for (const auto& e : ls) {//范围for不确定类型,加引用push_back(e);}}

 

list的析构函数

    ~list(){clear();delete _head;_head = nullptr;}

list的赋值运算符重载

    //ls2 = ls1list<T>& operator=(list<T> ls){std::swap(_head, ls._head);return *this;}

list的initializer_list

可以将花括号内容,直接赋值给对象

    list (initializer_list<T> il){empty_Init();for (const auto& e : il) {push_back(e);}}

 项目文件

//
//  list.hpp
//  List
//
//  Created by 南毅 on 2024/5/28.
//#include <iostream>
using namespace std;namespace nanyi {
template <class T>
class list_Node{
public:T _data;list_Node<T>* _prev;list_Node<T>* _next;list_Node(const T& data):_data(data),_prev(nullptr),_next(nullptr){}
};template <class T,class Ref,class Ptr>
class List_iterator{
public:typedef list_Node<T> Node;typedef List_iterator Self;//不需要写析构函数,这个节点又不是这个类的//一个类一般不写析构,也就不需要显示写深拷贝List_iterator(Node* node):_node(node){}//日期类返回一个日期,那么迭代器返回一个迭代器//++itSelf& operator++(){_node = _node->_next;return *this;}//--itSelf& operator--(){_node = _node->_prev;return *this;}//it++Self operator++(int)//加参数 区分前置后置{Self tmp(*this);_node = _node->_next;return tmp;}//it--Self operator--(int){Self tmp(*this);_node = _node->_prev;return tmp;}Ref operator*(){return _node->_data;}bool operator!=(const Self& it){return _node != it._node;}bool operator==(const Self& it){return _node == it._node;}Ptr operator->(){return &(_node->_data);}
public:Node* _node;};//template <class T>
//class const_List_iterator{
//public:
//    typedef list_Node<T> Node;
//    typedef const_List_iterator Self;
//    
//    //不需要写析构函数,这个节点又不是这个类的
//    //一个类一般不写析构,也就不需要显示写深拷贝
//    const_List_iterator(Node* node)
//    :_node(node)
//    {
//        
//    }
//    
//    //日期类返回一个日期,那么迭代器返回一个迭代器
//    //++it
//    Self& operator++(){
//        _node = _node->_next;
//        return *this;
//    }
//    //--it
//    Self& operator--(){
//        _node = _node->_prev;
//        return *this;
//    }
//    //it++
//    Self operator++(int)//加参数 区分前置后置
//    {
//        Self tmp(*this);
//        _node = _node->_next;
//        return tmp;
//    }
//    //it--
//    Self operator--(int){
//        Self tmp(*this);
//        _node = _node->_prev;
//        return tmp;
//    }
//    
//    
//    const T& operator*(){
//        return _node->_data;
//    }
//    
//    bool operator!=(const Self& it){
//        return _node != it._node;
//    }
//    
//    bool operator==(const Self& it){
//        return _node == it._node;
//    }
//    
//    const T* operator->(){
//        return &(_node->_data);
//    }
//private:
//    Node* _node;
//    
//};template <class T>
class list{
public:typedef list_Node<T> Node;typedef List_iterator<T,T&,T*> iterator;typedef List_iterator<T,const T&,const T*> const_iterator;//typedef const_List_iterator<T> const_iterator;void empty_Init(){_head = new Node(T());//不能使用0初始化,因为类型不确定_head->_next = _head;_head->_prev = _head;}list(){empty_Init();}void clear(){auto it = begin();while (it != end()) {it = erase(it);//不能++it,首先会迭代器失效,其次erase会自动返回下一个位置}}//拷贝构造list(const list<T>& ls){empty_Init();for (const auto& e : ls) {push_back(e);}}//析构~list(){clear();delete _head;_head = nullptr;}void push_back(const T& x){
//        Node* newnode = new Node(x);
//        Node* tail = _head->_prev;
//        
//        tail->_next = newnode;
//        newnode->_prev = tail;
//        newnode->_next = _head;
//        _head->_prev = newnode;insert(end(), x);}void pop_back(){erase(--end());}void push_front(const T& x){insert(begin(), x);}void pop_front(){erase(begin());}iterator begin(){return iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator begin()const{return const_iterator(_head->_next);}const_iterator end() const{return const_iterator(_head);}iterator insert(iterator pos , const T& x){Node* cur = pos._node;Node* newnode = new Node(x);Node* prev = cur->_prev;newnode->_next = cur;newnode->_prev = prev;prev->_next = newnode;cur->_prev  = newnode;return iterator(newnode);}iterator erase(iterator pos){Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;// prev cur nextprev->_next = next;next->_prev = prev;delete cur;cur = nullptr;return iterator(next);}//ls2 = ls1list<T>& operator=(list<T> ls){std::swap(_head, ls._head);return *this;}list (initializer_list<T> il){empty_Init();for (const auto& e : il) {push_back(e);}}
public:Node* _head;
};
}

4.list与vector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下:

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/19725.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

M3/M4 Ultra Mac Pro:你需要知道的一切

本文翻译自&#xff1a;M3/M4 Ultra Mac Pro: Everything you need to know (By Roman Loyola2024年5月15日 ) https://www.macworld.com/article/2320613/m3-m4-ultra-mac-pro-everything-you-need-to-know.html 文章目录 Mac Pro M3/M4&#xff1a;发布日期Mac Pro M3/M4&…

yangwebrtc x86_64环境搭建

版本&#xff1a;5.0.099 sudo apt-get install libxext-dev sudo apt-get install x11proto-xext-dev sudo apt-get install libxi-dev sudo apt install libasound2-dev sudo apt install libgl1-mesa-dev sudo apt-get install libxtst-dev 用qt打开以下两个项目的.pro met…

探索UWB模块的多功能应用——UWB技术赋能智慧生活

超宽带&#xff08;Ultra-Wideband, UWB&#xff09;技术&#xff0c;凭借其高精度、低功耗和强抗干扰能力&#xff0c;正在成为智能家居领域的一项关键技术。UWB模块的应用不仅提高了智能家居设备的性能&#xff0c;还为家庭安全、设备管理和用户体验带来了显著的改善。 UWB模…

pycharm 上一次编辑位置不见了

目录 pycharm2024版 上一次编辑位置不见了&#xff0c;研究发现移到了左下角了&#xff0c;如下图所示&#xff1a; 上一次编辑位置快捷键&#xff1a; pycharm2024版 上一次编辑位置不见了&#xff0c;研究发现移到了左下角了&#xff0c;如下图所示&#xff1a; 上一次编辑…

Windows 80端口占用解决办法

启动软件系统前&#xff0c;有时遇见端口被其他程序占用&#xff0c;导致无法启动系统 解决办法: # 查看端口占用情况 > netstat -ano | findstr 端口号通常端口占用&#xff0c;通过任务管理器查看PID&#xff0c;结束任务可以完成。System进程占用&#xff0c;结束不了&…

惯性动作捕捉与数字人实时交互/运营套装,对高校元宇宙实训室有何作用?

惯性动作捕捉与数字人实时交互/运营套装&#xff0c;可以打破时空限制&#xff0c;通过动捕设备写实数字人软件系统动捕设备系统定制化数字人短视频渲染平台&#xff0c;重塑课程教学方式&#xff0c;开展元宇宙沉浸式体验教学活动和参观交流活动。 写实数字人软件系统内置丰富…

AI预测福彩3D采取888=3策略+和值012路一缩定乾坤测试5月31日预测第7弹

昨天的3D已命中&#xff01;今天继续基于8883的大底&#xff0c;使用尽可能少的条件进行缩号。好了&#xff0c;直接上结果吧~ 首先&#xff0c;888定位如下&#xff1a; 百位&#xff1a;7,6,5,8,9,3,2,0 十位&#xff1a;3,4,5,2,1,7,8,9 …

视频汇聚EasyCVR平台GA/T 1400视图库应用:助力社会治安防控效能提升

在信息化、智能化的时代浪潮下&#xff0c;公安视频图像信息应用系统的发展与应用显得尤为重要。GA/T 1400标准&#xff0c;全称为《公安视频图像信息应用系统》&#xff0c;作为公安行业的一项重要标准&#xff0c;其视图库的应用在提升公安工作效能、加强社会治安防控等方面发…

小白跟做江科大32单片机之按键控制LED

原理部分 1.LED部分使用的是这样的连接方式 2.传感器模块的电路图 滤波电容如果接地&#xff0c;一般用于滤波&#xff0c;在分析电路时就不用考虑。下面这个电路就是看A端和B端哪端的拉力大&#xff0c;就能把电压值对应到相应的电压值 比较器部分 如果A端电压>B端电压&am…

深入Kafka消息分区机制:从原理到实践

深入Kafka消息分区机制&#xff1a;从原理到实践 在现代分布式系统中&#xff0c;如何高效地处理海量数据是一个至关重要的问题。Apache Kafka作为一种高吞吐量的分布式消息系统&#xff0c;广泛应用于日志收集、实时分析等场景。为了保证数据的高效处理和系统的高可扩展性&am…

MyBatis通用Mapper:简化数据库操作的利器

引言 在软件开发中&#xff0c;数据库操作是不可或缺的一部分。通常我们会使用mybatis&#xff0c;的MBG插件&#xff0c;自动生成表对应的基本操作语句xml。 当我们的表字段发生变化的时候&#xff0c;我们需要修改实体类和Mapper文件定义的字段和方法。如果是增量维护&…

【学习笔记】数据结构(一)

基本概念和术语 &#x1f449;数据&#xff1a;所有能被输入到计算机中&#xff0c;且被计算机处理的符号的集合&#xff1b; 是计算机操作对象的总称&#xff1b;是计算机处理信息的载体&#xff1b;是信息的某一种特定的符号表示形式包括数值型数据、非数值型数据 &#x1…

汇编概论和实践

一 汇编第一例 C代码 #include <stdio.h>int main() {printf("Hello, World!\n");return 0; }对应的汇编 .LC0:.string "Hello, World!"main:pushq %rbpmovq %rsp, %rbpleaq .LC0(%rip), %rdicall puts@PLTmovl $0, %eaxpopq %rbpret 二 CPU架构…

Apache Pulsar 中文社区有奖问卷调查(2024 上半年度)

Apache Pulsar 中文社区有奖问卷调查&#xff08;2024 上半年度&#xff09; &#x1f4e3; &#x1f4e3; &#x1f4e3; Hi&#xff0c;Apache Pulsar 社区的小伙伴们&#xff0c;社区 2024 上半年度的有奖问卷调查来啦&#xff01; &#x1f64c; 本次调查旨在了解用户使用 …

涂装线体智能化管理:RFID技术的典范案例

涂装线体智能化管理&#xff1a;RFID技术的典范案例 汽车涂装是汽车制造过程中极为关键的一环&#xff0c;涉及多道工序&#xff0c;如预处理、电泳、中涂、面漆等&#xff0c;每一步都需要精确控制以确保车身表面的质量和美观。传统方式下&#xff0c;车辆在不同工位间的流转依…

新火种AI|OpenAI要和苹果合作了?微软有些不高兴

作者&#xff1a;一号 编辑&#xff1a;美美 和苹果之间的合作&#xff0c;可能会称为Altman引以为傲的功绩。 根据 The Information 援引知情人士的消息&#xff0c;OpenAI 已经和苹果达成了协议&#xff0c;将在其产品中运用 OpenAI 的对话式 AI。 如果进展顺利&#xff…

SpringBoot案例,通关版

项目目录 此项目为了伙伴们可以快速入手SpringBoot项目,全网最详细的版本,每个伙伴都可以学会,这个项目每一步都会带大家做,学完后可以保证熟悉SpringBoot的开发流程项目介绍:项目使用springboot mybatis进行开发带你一起写小项目先把初始环境给你们第一步新建springboot项目返…

基于知识图谱分析贸易关系走向

基于知识图谱分析贸易关系走向 前言一、基础数据二、贸易规则三、知识图谱可视化四、完整代码 前言 知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。在贸易关系的分析中&#xff0c;知识图谱可以将各个国家、地区、商品、贸易政策等作为节点&#…

人脸识别模型与人类视觉识别的对比——评估人脸识别模型存在偏见是否比人类的偏见大?

1. 概述 人脸识别系统是一个几十年来一直备受关注的研究领域。而且在过去的几年中。公司和政府一直在积极引入人脸识别系统&#xff0c;并且我们看到越来越多的机会可以看到人脸识别系统。例如&#xff0c;有的系统可以随便介绍&#xff0c;如搜索特定人的图像&#xff08;图像…

Appium安装及配置(Windows环境)

在做app相关自动化测试&#xff0c;需要使用appium来做中转操作&#xff0c;下面来介绍一下appium的环境安装配置 appium官方文档&#xff1a;欢迎 - Appium Documentation 一、下载appium 下载地址&#xff1a;https://github.com/appium/appium-desktop/releases?page3 通…