西湖大学提出AIGC检测框架,精准识别AI撰写的文稿

近年来人工智能技术突飞猛进,尤其是大语言模型的出现,让AI具备了创作文章、小说、剧本等内容的能力。

AI代写,已经逃不过老师、编辑、审稿人的火眼金睛了。但让AI仅改写部分片段,就安全了么?

针对检测AI改写的片段,西湖大学发布了一种叫做"篡改文本片段检测"(PTD)的新方法,它能精确识别文本中哪些片段是由AI生成或改写的,让AI改写的文本无处遁形!

传统的AI文本检测通常只能判断整篇文章是否出自AI之手,但PTD可以更细粒度地定位到文章的特定片段。文章通过实验表明,即使AI擅长模仿人类的写作风格,经过训练的检测模型仍然能从上下文线索中识别出机器的"笔迹"。这一方法不仅在已知模型上取得了超过95%的识别准确率,在未知模型上的表现也令人惊喜。通过细致的统计和实验分析,研究者发现改写句子与原文及上下文存在显著差异,这为检测提供了重要线索。此外,该方法还能有效抵御各类对抗性攻击,为传统的AI文本检测模型保驾护航。这一研究为我们提供了透过AI改写文本的完美伪装,看清其中潜藏风险的利器。

这项研究引发了一个有趣的思考:在AI主导内容生产的时代,人类原创的价值何在?机器是否终将取代人类成为"创作者"?事实上,就像工业革命不会消灭手工艺人一样,AI也不太可能完全取代人类创作。相反,懂得利用AI辅助创作、提高效率的人,或许会在未来占据优势。无论如何,这项新技术为我们认识AI提供了新视角。

图片

论文题目:
Spotting AI’s Touch: Identifying LLM-Paraphrased Spans in Text

论文链接:
https://arxiv.org/pdf/2405.12689

  3.5研究测试:
hujiaoai.cn


4研究测试:
askmanyai.cn


Claude-3研究测试:
hiclaude3.com

AI作文泛滥,改写检测面临新挑战

随着ChatGPT、LaMDA等大语言模型技术的日益成熟,AI生成的文章正以惊人的速度在网络上传播。这些由AI编写的文章不仅语法通顺、逻辑严谨,甚至连行文风格都与人类写手难分伯仲。更令人担忧的是,不法分子开始利用AI改写技术,对现有的文章进行部分改写,快速生产"洗稿"内容,混淆视听。面对层出不穷的AI作文和改写作文,传统的人工智能生成文本检测方法往往力不从心,难以精准识别出篡改的部分。

图片

AI作文泛滥带来的问题不容小觑。首先,它对内容原创性构成了严重挑战。一些心存侥幸之人利用AI改写技术,对他人的劳动成果略作修改便冒充原创,侵犯了原作者的合法权益。其次,AI改写文章的过程缺乏必要的事实核查和伦理把关。机器并不能完全理解文章内容,盲目改写可能产生错误甚至有害的信息。更严重的是,别有用心之人可能利用这一漏洞,改写后大量传播虚假信息,给社会带来难以估量的危害。

此外,从技术角度来看,由ChatGPT等先进模型改写的文章较之传统AI作文而言,在语法、语义、逻辑等方面均有大幅提升,与人类写作更加接近。传统的基于文本统计特征的检测方法很难发挥作用。下图直观地对比了原始文本与改写文本的困惑度分布,两者难以区分。因此,针对性地检测AI改写文本,成为了当务之急。

图片

AI改写文章往往只对原文的局部进行修改,而非全篇重写。这为检测带来了新的思路。通过比较文章中每个句子与上下文的关系,有望识别出机器改写的痕迹。这种细粒度的检测有望揪出那些披着原创外衣的AI改写作文。然而,传统的文本检测方法大多将文章视为一个整体,很难做到逐句分析。这就要求我们从全新的角度审视这一问题,探索句子级别的检测新方案。

AI改写还呈现出不同的改写模式,给检测增加了难度。研究发现,AI改写可以分为两类:上下文无关改写和上下文相关改写。前者是在不考虑上下文的情况下,对目标句子进行改写。后者则会参考句子的上下文,生成与之更加贴合的改写内容。下图的数据表明,含有上下文线索的改写更难被检测出来。这对改写检测提出了更高的要求,需要深入理解句子与上下文的关联。

最后,AI改写检测任务还面临着模型泛化的挑战。目前大多数检测模型只在特定的数据集上进行训练和评估,对未知领域的文章和新型AI模型的检测能力有限。而且不同领域和不同模型生成的改写文章,检测难度差异显著。这就要求检测模型具备更强的泛化性,能够适应多变的应用场景。

图片

PTD:AI改写克星的诞生

面对AI改写泛滥的困境,我们迫切需要一位"英雄"来拯救内容生态。在众多研究者的不懈努力下,这位"英雄"终于诞生了,它就是PTD(paraphrased text span detection)框架。PTD犹如一束探照灯,能够穿透AI改写的重重迷雾,为我们找到真相。

PTD框架的独特之处在于它别具慧眼的"细粒度"视角。与以往将篇章视为一个整体的方法不同,PTD将目光聚焦在文章的每一个句子上。它仔细审视每个句子与上下文的关系,从中发现蛛丝马迹,识别出潜藏的AI之手。这种精细入微的分析,让AI改写无所遁形。

图片

PTD框架提供了两种利器:分类模型和回归模型。分类模型就像一位严谨的"判官",对每个句子做出"原创"或"改写"的裁决;而回归模型则像一位细致的"鉴定师",不仅判定改写,还能评估改写的程度。实验表明,分类模型在改写句判别上更胜一筹,而回归模型则在改写程度估计方面更具优势。如果将两者结合,就能发挥出"1+1>2"的奇效。这正是聚合型回归模型的独到之处,它融合了多种语言差异度量,从语法、语义、结构等多个维度对改写进行考量,做到了全方位无死角的检测。

为了让PTD在现实应用中大显身手,研究者们精心打造了一个名为PASTED的数据集。这个数据集就像是一个缩微版的内容江湖,囊括了人类写手和AI写手的多种文章,还有形形色色的改写版本。构建数据集的过程颇具匠心,研究者们先从真实的人类和AI写作语料中精选原始文章,然后再施以随机改写的"魔法",让原文的局部脱胎换骨,化身为改写版本。这种随机改写的方式让数据集更加贴近真实的改写场景。此外,研究者还精心设计了两种改写策略:上下文无关改写和上下文相关改写。前者是纯粹的句内改写,后者则会参考上下文,对局部做出调整。这两类数据的加入,让PASTED数据集更具全面性和挑战性。

下图展示了PTD框架的工作流程。首先,PTD会对输入的文章进行切分,获得一个个独立的句子。接着,每个句子都会被送入PTD模型进行推理和预测。分类模型和回归模型分别给出改写概率和改写程度。最后,我们将模型输出解读为直观的改写判定结果。值得一提的是,PTD模型在推理时会充分利用上下文信息。这就好比一位有经验的侦探,不仅要观察嫌疑人的言行,还要结合现场的种种线索,最终得出准确的判断。

图片

PTD的"蒙眼识狼"大挑战

在 PTD 框架问世之后,研究者们迫不及待地想要检验它的实力。于是他们精心策划了一场别开生面的"蒙眼识狼"大挑战。这场挑战中,PTD 模型将在 PASTED 数据集上接受全方位的考核,看它能否在层层迷雾中识别出真正的 AI 改写"狼"。

首先,研究者们让 PTD 模型在 PASTED 数据集的随机划分测试集上进行"自由演练"。这就像是一次"明面"的较量,PTD 模型对这部分数据并不陌生。果不其然,所有的 PTD 模型在这一环节中表现出色,AUROC 指标均超过 0.95,识别改写句的准确率高达 95% 以上。分类模型和回归模型更是各有千秋,前者在改写句判别上略胜一筹,后者则在改写程度估计上更为精准。聚合回归模型集百家之长,在多项指标上都取得了最佳表现。这一阶段的结果证明,PTD 模型在面对已知风格的改写时,有着出色的辨识能力。

图片

接下来,研究者们带来了真正的挑战——"蒙眼"测试。他们从 PASTED 之外另选了一批数据,由全新的语言模型和改写策略生成而成。这就好比让 PTD 模型在完全陌生的战场上"蒙眼"作战。尽管这些新数据不在 PTD 的训练范围内,但它仍然展现出了惊人的泛化能力。即便 AUROC 和准确率有所下降,但分类模型依然保持了 47.21% 的高准确率,而聚合回归模型在改写程度估计上也毫不逊色。这说明 PTD 模型并非只是机械地记忆训练数据,而是真正学会了辨别改写的一般规律。

下图进一步揭示了 PTD 在不同领域文本和生成模型上的稳健表现。尽管科技新闻、学术论文等文本对 PTD 而言是全新的领域,但它仍然能够从容应对。

图片

而下图则呈现了一个有趣的现象:随着篇章中改写句数量的增加,PTD 的识别成功率也随之提高。这说明篇章中改写痕迹越明显,就越容易被 PTD 捕捉到。

图片

除了"蒙眼"测试,研究者们还对 PTD 模型发起了一系列"奇袭",考验它应对各种对抗性攻击的能力。他们尝试对文章做一些局部的、细微的修改,比如调换个别句子的顺序,或者替换个别词汇,看这些微小的变化能否骗过 PTD 的法眼。然而 PTD 模型并没有轻易上当,而是表现出了超强的抗干扰能力。实验表明,PTD 模型能够明辨句序调换带来的差异,也不会将个别词汇替换等同于全句改写。这些结果无疑让我们对 PTD 模型的鲁棒性充满信心。

图片

"蒙眼识狼"大挑战的系列实验充分展示了 PTD 框架的强大实力。无论是面对已知领域还是未知领域,PTD 都能保持高度的识别精准度。无论是应对常规输入还是对抗性攻击,PTD 都展现了超凡的鲁棒性。这些结果有力地证明了 PTD 作为一种创新的 AI 改写检测范式,有望在未来的内容生态治理中发挥重要作用。它将成为守护原创内容的有力武器,让那些披着原创外衣的 AI "狼"无处遁形。

总结与展望

PTD框架的诞生,为AI改写检测开辟了一条崭新的道路。它独特的句子级分析视角、灵活的预测方式以及惊人的泛化能力,共同铸就了这一AI改写克星的风采。在PASTED数据集的试炼中,PTD模型以出色的表现证明了自己的实力,展现了辨别改写真伪的非凡智慧。

PTD框架的意义远不止技术层面。它为探索AI与内容生态的平衡之道提供了新的视角。通过精准识别AI改写,PTD在维护原创内容版权的同时,也为AI写作划定了合理边界,为化解人机对立、实现共生共荣提供了一种可能。

展望未来,PTD框架必将在守护内容生态中扮演越来越重要的角色。随着AI技术的飞速发展,PTD也需要不断进化、与时俱进,成为真正的AI改写终结者。让我们携手并进,以开放和创新的姿态拥抱未来,共同开创内容生态的新纪元。PTD将是这场征程中最可靠的伙伴和最坚实的后盾。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/19414.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS7 升级 openssh

一、准备环境 1、准备一台CentOS7系统的虚拟机 2、 配置好网络和YUM源 3、安装版本确认 openssh升级到9.7 zlib 使用 1.3.1 openssl 使用 1.1.1.w 二、升级openssh 1、安装编译环境基础 yum -y install build-essential perl gcc gcc-c make pam-devel 2、编译安装zl…

嵌入式 - 高电平脉冲触发

高脉冲触发器是一种数字信号,用于在信号从低电平状态(通常为 0 伏或接地)变为高电平状态(通常为正电压,如 5V 或 3.3V,具体取决于系统)时启动动作或事件。这种从低到高的转变也称为上升沿&#…

新版IDEA没有办法选择Java8版本解决方法

2023年11月27日后,spring.io 默认不再支持创建jdk1.8的项目 解决方法就是把 Spring的Server URL 改为阿里的。 阿里的Server URL https://start.aliyun.com/ 默认的Server URL https://start.spring.io 阿里的Server URL https://start.aliyun.com/

Linux Kernel入门到精通系列讲解(RV-U-boot 篇) 4.1 RISC-V快速移植启动一个U-boot

1. 概述 OpenSBI已经被我们成功突破了,然后就来到了BL3 uboot阶段了,没学会OpenSBI的可以先跳回去学,因为它们是互相依赖的关系。我们用的是最新的2024-4版本,需要的可以到u-boot官网自行下载,也可以使用我们的git仓库中的源码。 U-boot 下载地址 2. U-boot简单描述 在…

Linux自动重启系统脚本测试工具

前言 脚本允许用户指定重启的次数和重启间隔时间,并自动生成相应的定时任务。通过使用这个脚本,系统管理员可以轻松地设置重启测试。每次重启操作都会被记录下来,以便用户随时了解测试情况。 一、脚本 #!/bin/bashif [ "$1" &qu…

OLED写入指令和数据

1.OLED写命令 写命令/数据的代码 / * 1. start() 2. 写入 b0111 1000 0x78 3. ACK 4. cotrol byte: (0)(0)000000 写入命令 (0)(1)000000写入数据 5. ACK 6. 写入指令/数据 7. ACK 8. STOP */ void Oled_Write_Cmd(char dataCmd)5.1.4 OLED的寻址模式 如何显示一个点&#x…

YOLOv5改进 | 注意力机制 | 添加双重注意力机制 DoubleAttention【附代码/涨点能手】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 在图像识别中,学习捕捉长距离关系是基础。现有的CNN模型通常通过增加深度来建立这种关系,但这种形式效率极低。因此&…

电脑msvcp140_atomic_wait.dll丢失的高效率解决方法,快速的一键修复

我们常常遇到各种不可预见的电脑故障问题,msvcp140_atomic_wait.dll丢失是一个常见的系统错误,它通常发生在Windows操作系统中,特别是当用户尝试运行依赖于Microsoft Visual C Redistributable的应用程序时。该问题可能导致程序崩溃或无法启动…

摸鱼大数据——Hive表操作——分桶表

1、介绍 分桶表特点: 会产生分桶文件。 效率上注意: 查询数据的时候如果使用了分桶字段那么会提升数据查询效率(数据过滤where、join、分组、抽样查询);否则会进行全表扫描 分桶与分区的区别: 1- 分桶字段必须是原有的字段名称 2-…

动手学深度学习(Pytorch版)代码实践 -深度学习基础-02线性回归基础版

02线性回归基础版 主要内容 数据生成:使用线性模型 ( y X*w b ) 加上噪声生成人造数据集。数据读取:通过小批量读取数据集来实现批量梯度下降,打乱数据顺序并逐批返回特征和标签。模型参数初始化:随机初始化权重和偏置&#x…

Linux驱动开发笔记(二) 基于字符设备驱动的GPIO操作

文章目录 前言一、设备驱动的作用与本质1. 驱动的作用2. 有无操作系统的区别 二、内存管理单元MMU三、相关函数1. ioremap( )2. iounmap( )3. class_create( )4. class_destroy( ) 四、GPIO的基本知识1. GPIO的寄存器进行读写操作流程2. 引脚复用2. 定义GPIO寄存器物理地址 五、…

应急通信保障之多链路聚合通信设备在应急救援实施中的解决方案

在当今信息化社会,应急通信保障已成为各类救援任务中不可或缺的一环。尤其在复杂多变的应急救援现场,如何确保通信畅通、信息传递及时,直接关系到救援行动的成败。近年来,多链路聚合通信设备以其独特的优势,逐渐在应急…

Go语言-big.Int

文章目录 Go 语言 big.Int应用场景:大整数位运算使用举例: go sdk中crypto/ecdsa 椭圆曲线生成私钥相关结构中就有使用 Go 语言 big.Int Go 语言 big.Int 参考URL: https://blog.csdn.net/wzygis/article/details/82867793 math/big 作为 Go 语言提供的…

史上最全网络安全面试题+答案

1、什么是SQL注入攻击 前端代码未被解析被代入到数据库导致数据库报错 2、什么是XSS攻击 跨站脚本攻击 在网页中嵌入客户端恶意脚本,常用s语言,也会用其他脚本语言 属于客户端攻击,受害者是用户,网站管理员也属于用户&#xf…

PMI-ACP考试注意事项及应试指南,考前必看!

距离6月1日PMI-ACP敏捷管理考试只有3天时间了! 为保证每位考生都能顺利进入考场参加考试,特意为大家摘要出了重要“考试须知”,请各位仔细阅读。 一、PMI-ACP考试材料 参加PMI-ACP考试,必须要带的是: 1、身份证或身…

CentOS 7 64位 常用命令

一、系统管理命令 systemctl start firewalld.service:启动防火墙服务 systemctl stop firewalld.service:停止防火墙服务 systemctl enable firewalld.service:设置防火墙服务开机自启 systemctl disable firewalld.service:禁止…

金融反欺诈指南:车险欺诈为何如此猖獗?

目录 车险欺诈猖獗的原因 车险欺诈的识别难点 多重合作打击车险欺诈 保险企业需要提升反欺诈能力 监管部门需要加强协同合作 青岛市人民检察院在其官方微信公众号上发布的梁某保险诈骗案显示,2020 年以来,某汽修厂负责人梁某、某汽车服务公司负责人孙某&…

地理信息系统(GIS)软件的最新进展

在数字化转型的浪潮中,地理信息系统(GIS)作为连接现实与数字世界的桥梁,其软件和技术的每一次迭代升级都在推动着空间信息处理和分析能力的飞跃。作为地理信息与遥感领域的探索者,本文将带您深入了解GIS软件的最新进展…

大数据报告有什么作用?查询方式一般有几种?

随着互联网金融的飞速发展,网络借贷已经成为了一种常见的融资方式。然而,如何在众多的平台中做出正确的选择,避免风险并实现最大利益,这就需要一份具有参考价值的大数据报告。本文将详细阐述大数据报告的作用及查询方式的几种方式…

gulp入门9:symlink

在Gulp中,symlink() 是一个用于创建文件系统上符号链接(symlinks)的流(stream)的函数。以下是对 gulp.symlink() 的深入研究,包括其用法、参数、返回值以及一些相关的注意事项。 1. 用法 symlink() 函数的…