深度学习——卷积神经网络

卷积神经网络

    • 1.导入需要的包
    • 2.数据导入与数据观察
    • 3.卷积层
    • 4.汇聚层
        • 最大汇聚
      • 平均汇聚
      • 全局平均汇聚
    • 5.搭建卷积神经网络进行手写数字识别
      • 导入并对数据进行预处理
      • 搭建卷积神经网络
    • 6.利用函数式API与子类API搭建复杂神经网络
      • 残差层

1.导入需要的包

numpy as np: NumPy是一个用于科学计算的库,它提供了高效的数组处理能力,对于图像处理等任务非常有用。
pandas as pd: Pandas是一个强大的数据分析和处理库,它提供了数据结构(如DataFrame)和工具,用于数据操作和分析。
matplotlib.pyplot as plt: Matplotlib是一个绘图库,pyplot是其中的一个模块,它提供了一个类似于MATLAB的绘图框架。
sklearn: Scikit-Learn是一个用于机器学习的库,它提供了各种分类器、回归器、聚类算法等。
tensorflow as tf: TensorFlow是一个开源的机器学习库,用于构建和训练各种类型的机器学习模型。
from tensorflow import keras: Keras是TensorFlow的一个高级API,它允许您轻松地构建和训练复杂的神经网络。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import tensorflow as tf
from tensorflow import keras

2.数据导入与数据观察

从sklearn中导两张大小为的图像,并组成一个简单数据集image。数据集image的4维张量分别对应着
数据集中的样本数2
图像高度427
图像宽度640
图像通道3

from sklearn.datasets import load_sample_imagechina = load_sample_image("china.jpg") / 255
flower = load_sample_image("flower.jpg") / 255
plt.subplot(1,2,1)
plt.imshow(china)
plt.subplot(1,2,2)
plt.imshow(flower)
print("china.jpg的维度:",china.shape)
print("flower.jpg的维度:",flower.shape)images = np.array([china,flower])
images_shape = images.shapeprint("数据集的维度:",images_shape)

在这里插入图片描述

3.卷积层

u = 7 #卷积核边长
s = 1 #滑动步长
p = 5 #输出特征图数目

filters: 整数,指定卷积核的数量,即输出的维度
kernel_size: 一个整数或元组((height, width)),指定卷积核的尺寸
strides: 一个整数或元组((stride_height, stride_width)),指定卷积的步长
padding: 字符串,指定边缘填充方式。有两个选项:
"VALID":不进行填充,卷积的边缘部分将被忽略。
"SAME":进行填充,使得输出的高度和宽度与输入相同(或根据步长缩小)。填充通常是通过在输入周围添加零来实现。
input_shape: 一个整数元组,指定输入数据的形状。对于 Conv2D 层,input_shape 应该包含三个整数,分别是输入的高度、宽度和通道数。

conv = keras.layers.Conv2D(filters= p, kernel_size= u, strides= s,padding="SAME", activation="relu", input_shape=images_shape)

卷积后的图像的4维张量分别对应着 - 数据集大小2 - 图像的高427与宽640,正是由于padding==“SAME”,所以图像大小并没有发生变化 - 输出特征图个数5。

image_after_conv = conv(images)
print("卷积后的张量大小:", image_after_conv.shape)

在这里插入图片描述

4.汇聚层

最大汇聚

最大汇聚是在下采样区域范围内提取所有元素数值的最大值,参数pool_size决定下采样区域的大小。

由于pool_size = 2,最大汇聚以后图像的特征图大小在高度与宽度上都各自缩小一半。

pool_max = keras.layers.MaxPool2D(pool_size=2)
image_after_pool_max = pool_max(image_after_conv)
print("最大汇聚后的张量大小:",image_after_pool_max.shape)

在这里插入图片描述

平均汇聚

平均汇聚是将下采样区域内的所有元素的数值取平均,参数pool_size决定下采样区域的大小。

pool_avg = keras.layers.AvgPool2D(pool_size=2)
image_after_pool_avg = pool_avg(image_after_conv)
print("平均汇聚后的张量大小:",image_after_pool_avg.shape)

在这里插入图片描述

全局平均汇聚

全局平均汇聚是将特征图内的所有元素的数值取平均,输出的特征图只有一个单值。

pool_global_avg = keras.layers.GlobalAvgPool2D()
image_after_pool_global_avg = pool_global_avg(image_after_conv)
print("全局平均汇聚后的张量大小:",image_after_pool_global_avg.shape)

在这里插入图片描述

5.搭建卷积神经网络进行手写数字识别

导入并对数据进行预处理

path = "D:/rgzn/神经网络/"  #存放.csv的文件夹
train_Data = pd.read_csv( path+'mnist_train.csv', header = None) #训练数据
test_Data = pd.read_csv( path+'mnist_test.csv', header = None) #测试数据
X, y = train_Data.iloc[:,1:].values/255, train_Data.iloc[:,0].values #数据归一化X_valid, X_train = X[:5000].reshape(5000,28,28) , X[5000:].reshape(55000,28,28) #验证集与训练集
y_valid, y_train = y[:5000], y[5000:]X_test,y_test = test_Data.iloc[:,1:].values.reshape(10000,28,28)/255, test_Data.iloc[:,0].values #测试集
print(X_train.shape)
print(X_valid.shape)
print(X_test.shape)

在这里插入图片描述
此时数据还是三维的张量,由于手写数字图像是灰度图像,通道只有1,因此,需要将数据扩展为四维张量。

X_train = X_train[..., np.newaxis]
X_valid = X_valid[..., np.newaxis]
X_test = X_test[..., np.newaxis]print(X_train.shape)
print(X_valid.shape)
print(X_test.shape)

在这里插入图片描述

搭建卷积神经网络

model_cnn_mnist = keras.models.Sequential([keras.layers.Conv2D(32, kernel_size=3, padding="same", activation="relu"),keras.layers.Conv2D(64, kernel_size=3, padding="same", activation="relu"),keras.layers.MaxPool2D(pool_size=2),keras.layers.Flatten(),keras.layers.Dropout(0.25),keras.layers.Dense(128, activation="relu"),keras.layers.Dropout(0.5),keras.layers.Dense(10, activation="softmax")
])

第一层卷积层,使用32个大小的卷积核
第二层卷积层,使用64个大小的卷积核
第三层汇聚层,将所有特征映射的维度缩小至原先一半
第四层是平展层,将原先四维张量(55000,14,14,64)平展成两维张量(55000,),即将一个样本的所有参数项平展成一个维度。
后续是全连接层。

model_cnn_mnist.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"])
model_cnn_mnist.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))

在这里插入图片描述
查看准确率

model_cnn_mnist.evaluate(X_test, y_test, batch_size=1)

在这里插入图片描述
用.summary()观察神经网络的整体情况

model_cnn_mnist.summary()

在这里插入图片描述
之前在全连接前馈神经网络中,我们手写数字识别的准确率大约在97%左右,而利用卷积神经网络,可以将准确率提升到99%。

6.利用函数式API与子类API搭建复杂神经网络

残差层

输出的特征图数目每隔一阵就会扩大一倍,且在扩大的同时,特征图的高度、宽度减半(滑动步长s=2),共计经过特征图数目为

  • 64的残差块3个
  • 128的残差块4个
  • 256的残差块6个
  • 以及512的残差块3个
    其中,残差连接分为实线连接与虚线连接
    实线连接即残差块的输入直接跨层与经过卷积的结果相加
    虚线连接主要针对的是滑动步长为2的部分,由于特征图的大小减小了,所以输入无法直接与卷积结果相加,也需要减小特征图大小
class ResidualUnit(keras.layers.Layer):def __init__(self, filters, strides=1, activation="relu"):super().__init__()self.activation = keras.activations.get(activation)self.main_layers = [keras.layers.Conv2D(filters, 3, strides=strides, padding = "SAME", use_bias = False), keras.layers.BatchNormalization(),self.activation,keras.layers.Conv2D(filters, 3, strides=1, padding = "SAME", use_bias = False),keras.layers.BatchNormalization()]# 当滑动步长s = 1时,残差连接直接将输入与卷积结果相加,skip_layers为空,即实线连接self.skip_layers = [] # 当滑动步长s = 2时,残差连接无法直接将输入与卷积结果相加,需要对输入进行卷积处理,即虚线连接if strides > 1:self.skip_layers = [keras.layers.Conv2D(filters, 1, strides=strides, padding = "SAME", use_bias = False),keras.layers.BatchNormalization()]def call(self, inputs):Z = inputsfor layer in self.main_layers:Z = layer(Z)skip_Z = inputsfor layer in self.skip_layers:skip_Z = layer(skip_Z)return self.activation(Z + skip_Z)

搭建完整的ResNet-34神经网络

model = keras.models.Sequential()model.add(keras.layers.Conv2D(64, 7, strides=2, padding = "SAME", use_bias = False))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu"))
model.add(keras.layers.MaxPool2D(pool_size=3, strides=2, padding="SAME"))prev_filters = 64
for filters in [64] * 3 + [128] * 4 + [256] * 6 + [512] * 3:strides = 1 if filters == prev_filters else 2    #在每次特征图数目扩展时,设置滑动步长为2model.add(ResidualUnit(filters, strides=strides))prev_filters = filtersmodel.add(keras.layers.GlobalAvgPool2D())
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(10, activation="softmax"))

训练:

model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))

在这里插入图片描述
查看准确率:

model.evaluate(X_test,y_test,batch_size=1)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/19271.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pytorch深度学习实践笔记4(b站刘二大人)

🎬个人简介:一个全栈工程师的升级之路! 📋个人专栏:pytorch深度学习 🎀CSDN主页 发狂的小花 🌄人生秘诀:学习的本质就是极致重复! 视频来自【b站刘二大人】 1 反向传播 Back propaga…

FFMPEG+ANativeWinodow渲染播放视频

前言 学习音视频开发,入门基本都得学FFMPEG,按照目前互联网上流传的学习路线,FFMPEGANativeWinodow渲染播放视频属于是第一关卡的Boss,简单但是关键。这几天写了个简单的demo,可以比较稳定进行渲染播放,便…

【运维】Linux 端口管理实用指南,扫描端口占用

在 Linux 系统中,你可以使用以下几种方法来查看当前被占用的端口,并检查 7860 到 7870 之间的端口: 推荐命令: sudo lsof -i :7860-7870方法一:使用 netstat 命令 sudo netstat -tuln | grep :78[6-7][0-9]这个命令…

全球痛风年轻化趋势明显 别嘌醇制剂需求增多

全球痛风年轻化趋势明显 别嘌醇制剂需求增多 别嘌醇制剂包括片剂和缓释胶囊两种剂型,别嘌醇片剂吸收快,可能会出现胃肠道反应;别嘌醇缓释胶囊释放比较缓慢,作用更持久,对胃肠道损害比较小。别嘌醇制剂是抑制尿酸合成的…

Java内存空间

Java内存空间划分 Java虚拟机在执行Java程序的过程中会把他管理的内存划分为若干个不同的数据区域,如图所示1.7和1.8两个版本的Java内存空间划分。 JDK1.7: JDK1.8: 线程私有: 程序计数器虚拟机栈本地方法栈 线程共享 : 堆方法区直接内…

股价飙升:AI PC大变革,联想的“联想时刻”正在缔造?

按照产业的传导逻辑,在颠覆式技术到来之时,当引发这场变革的最核心技术及产品真正进入了产品化、商业化阶段,此时直触需求端的终端厂商,其成长性估算将得到市场的重新预估。 眼下AI PC之于联想就是如此。 5月27日,联…

mysql中InnoDB的统计数据

大家好。我们知道,mysql中存在许多的统计数据,比如通过SHOW TABLE STATUS 可以看到关于表的统计数据,通过SHOW INDEX可以看到关于索引的统计数据,那么这些统计数据是怎么来的呢?它们是以什么方式收集的呢?今…

vscode:如何解决”检测到include错误,请更新includePath“

vscode:如何解决”检测到include错误,请更新includePath“ 前言解决办法1 获取includePath路径2 将includePath路径添加到指定文件3 保存 前言 配置vscode是出现如下错误: 解决办法 1 获取includePath路径 通过cmd打开终端,输入如下指令&a…

【第8章】SpringBoot之单元测试

文章目录 前言一、准备1. 引入库2. 目录结构 二、测试代码1. SpringBoot3ApplicationTests2.测试结果 总结 前言 单元测试是SpringBoot项目的一大利器&#xff0c;在SpringBoot我们可以很轻松地测试我们的接口。 一、准备 1. 引入库 <dependency><groupId>org.s…

Java基于saas模式云MES制造执行系统源码Spring Boot + Hibernate Validation什么是MES系统?

Java基于saas模式云MES制造执行系统源码Spring Boot Hibernate Validation 什么是MES系统&#xff1f; MES制造执行系统&#xff0c;通过互联网技术实现从订单下达到产品完成的整个生产过程进行优化管理。能有效地对生产现场的流程进行智能控制&#xff0c;防错防呆防漏&…

大模型时代的具身智能系列专题(五)

stanford宋舒然团队 宋舒然是斯坦福大学的助理教授。在此之前&#xff0c;他曾是哥伦比亚大学的助理教授&#xff0c;是Columbia Artificial Intelligence and Robotics Lab的负责人。他的研究聚焦于计算机视觉和机器人技术。本科毕业于香港科技大学。 主题相关作品 diffusio…

【FISCO BCOS 3.0】一、新版本搭链介绍

目录 一、区块链种类的变化 二、搭链演示 1.单群组区块链&#xff08;Air版本&#xff09; 2.多群组区块链&#xff08;Pro版本&#xff09; 3.可扩展区块链&#xff08;Max版本&#xff09; FISCO BCOS的发展速度如日中天&#xff0c;对于稳定的2.0版本而言&#xff0c;偶…

058.最后一个单词的长度

题意 给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。 难度 简单 示例 1&#xff1a; 输入&#xff1a;s "Hello World" 输…

JavaWeb基础(一)-IO操作

Java I/O工作机制&#xff1a; 注&#xff1a;简要笔记&#xff0c;示例代码可能较少&#xff0c;甚至没有。 1、Java 的 I/O 类库的基本架构。 ​ Java 的 I/O 操作类在包 java.io 下&#xff0c;大概有将近80个类&#xff0c;这些类大概可以分为如下四组。 基于字节操作的…

UE5中绘制饼状图

饼状图 使用UE绘制前提完整的创建过程123456678 附录代码.h代码.c代码 使用UE绘制前提 EPIC Game使用的版本是Unreal Engine 5.0.3。 没有使用其他额外的插件&#xff0c;使用的是C和Ui共同绘制。 C编译器使用的是VS2019。 完整的创建过程 1 首先在UE中随意一种项目的白色。…

服务器端请求伪造--SSRF

SSRF 简介 ##SSRF定义 SSRF(Server-Side Request Forgery:服务器端请求伪造)是一种由 攻击者构造形成&#xff0c;由服务端发起请求 的一个安全漏洞。一般情况下&#xff0c;SSRF攻击的目标是从 外网无法访问的内部系统&#xff08;正是因为它是由服务端发起的&#xff0c;所…

一个小技巧轻松提升量化精度!IntactKV:保持关键词元无损的大语言模型量化方法

目录 摘要关键词元&#xff08;Pivot Tokens&#xff09;方法概述实验验证1. 权重量化2. KV Cache 量化3. 权重和激活值量化 参考文献 本文介绍我们针对大语言模型量化的工作 IntactKV&#xff0c;可以作为插件有效提升 GPTQ、AWQ、QuaRot 等现有主流量化方法效果。论文作者来自…

海外社媒账号如何运营安全稳定?

由于设备与网络原因&#xff0c;通常一个海外社媒账号尤其是多账号的稳定性都有一定限制&#xff0c;错误的操作或者网络都可能使得账号被封&#xff0c;前功尽弃。本文将为大家讲解如何通过IP代理来维持账号稳定与安全&#xff0c;助力海外社媒矩阵的搭建。 一、社媒账号关联…

深入理解计算机系统 家庭作业4.52

练习题4.3 p.254 \sim\seq\seq-full.hcl文件内已经说的很清楚了哪些不能更改,哪些是题目要求更改的控制逻辑块. 依据家庭作业4.51的答案,在seq-full.hcl文件内更改对应的HCL描述即可 以下答案注释了#changed的就是更改部分 #/* $begin seq-all-hcl */ ######################…

Redis 中 Set 数据结构详解

用法 Redis 中的 Set 是一个无序&#xff0c;不重复集合&#xff08;里面的元素为字符串&#xff09;&#xff0c;支持常用的集合操作。 常见命令 1. 增 添加一个或多个元素到 set 中 SADD key member [ member ... ] 返回值&#xff1a; 添加成功的元素个数 将一个元素移到…