代码随想录-Day23

669. 修剪二叉搜索树

在这里插入图片描述

方法一:递归

class Solution {public TreeNode trimBST(TreeNode root, int low, int high) {if (root == null) {return null;}if (root.val < low) {return trimBST(root.right, low, high);} else if (root.val > high) {return trimBST(root.left, low, high);} else {root.left = trimBST(root.left, low, high);root.right = trimBST(root.right, low, high);return root;}}
}

这段代码定义了一个名为 Solution 的类,其中包含一个方法 trimBST,用于修剪(裁剪)给定二叉搜索树(BST)中的节点,使得所有节点的值在指定的区间 [low, high] 内。修剪操作应当保持二叉搜索树的性质。以下是代码逻辑的详细解析:

  1. 基本情况处理:首先检查根节点 root 是否为空。如果为空,直接返回 null,因为没有节点需要修剪。

  2. 节点值处理

    • 如果当前节点 root 的值 root.val 小于 low,说明当前节点及其左子树都不可能在保留范围内,因此直接递归地对右子树 root.right 调用 trimBST 方法,并返回结果作为新的根节点。这一步相当于“跳过”当前节点及其左子树。
    • 如果当前节点 root 的值 root.val 大于 high,说明当前节点及其右子树都不可能在保留范围内,因此直接递归地对左子树 root.left 调用 trimBST 方法,并返回结果作为新的根节点。这一步相当于“跳过”当前节点及其右子树。
    • 如果当前节点的值满足 low <= root.val <= high,说明当前节点值在指定区间内,需要保留。此时,递归地对左右子树进行修剪,并保持当前节点作为修剪后子树的根节点。
  3. 递归修剪子树:当当前节点值符合条件需要保留时,分别对左子树 root.left 和右子树 root.right 递归调用 trimBST 方法,以确保整个子树都被正确修剪。

  4. 返回处理后的节点:经过上述处理后,直接返回当前处理过的节点 root,作为修剪后子树的根。递归过程中,这个返回值会被上一层调用用来构建整个修剪后的BST。

通过这样的递归逻辑,trimBST 方法能够从根节点开始,逐步构建出只包含值在 [low, high] 范围内的二叉搜索树,并保持BST的性质。不在范围内的节点及其子树都会被“剪掉”,从而实现高效的修剪操作。

方法二:迭代

class Solution {public TreeNode trimBST(TreeNode root, int low, int high) {while (root != null && (root.val < low || root.val > high)) {if (root.val < low) {root = root.right;} else {root = root.left;}}if (root == null) {return null;}for (TreeNode node = root; node.left != null; ) {if (node.left.val < low) {node.left = node.left.right;} else {node = node.left;}}for (TreeNode node = root; node.right != null; ) {if (node.right.val > high) {node.right = node.right.left;} else {node = node.right;}}return root;}
}

这段代码提供了另一种实现方式,使用迭代方法来修剪二叉搜索树(BST),使其所有节点的值落在指定区间 [low, high] 内。相较于递归方法,迭代方法直接利用循环进行遍历和修剪。以下是代码逻辑的详细解析:

  1. 初始化:首先,代码通过一个 while 循环找到BST的第一个(最左边的)落在指定区间 [low, high] 内的节点作为新的根节点。如果根节点 root 的值小于 low,则向右移动(因为BST的性质保证了所有左子节点的值都小于根节点,所以要找大于等于 low 的节点,只能往右走);如果根节点的值大于 high,则向左移动。如果整个树的所有节点都不在区间内,最终 root 会变成 null,直接返回 null

  2. 修剪左子树:接下来,使用一个 for 循环来修剪根节点的左子树。循环的条件是当前节点的左子节点不为空。如果左子节点的值小于 low,说明整个左子树都不在指定区间内,直接将当前节点的左子节点更新为其左子节点的右子节点(跳过整个左子树的左部分);否则,将当前节点更新为其左子节点,继续检查更左的节点。

  3. 修剪右子树:随后,再使用一个类似的 for 循环来修剪根节点的右子树。循环的条件是当前节点的右子节点不为空。如果右子节点的值大于 high,说明整个右子树的右部分都不在指定区间内,直接将当前节点的右子节点更新为其右子节点的左子节点(跳过整个右子树的右部分);否则,将当前节点更新为其右子节点,继续检查更右的节点。

  4. 返回修剪后的根节点:经过上述两步修剪后,根节点及其左右子树都已经满足条件,直接返回 root 作为修剪后的二叉搜索树的根。

这种迭代方法同样保持了BST的性质,并且在处理每个节点时都是常量时间复杂度,总体时间复杂度为O(N),其中N为树中的节点数,空间复杂度为O(1),因为它只使用了固定数量的指针变量。

108. 将有序数组转换为二叉搜索树

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵
平衡二叉搜索树。

方法一:中序遍历,总是选择中间位置左边的数字作为根节点

class Solution {public TreeNode sortedArrayToBST(int[] nums) {return helper(nums, 0, nums.length - 1);}public TreeNode helper(int[] nums, int left, int right) {if (left > right) {return null;}// 总是选择中间位置左边的数字作为根节点int mid = (left + right) / 2;TreeNode root = new TreeNode(nums[mid]);root.left = helper(nums, left, mid - 1);root.right = helper(nums, mid + 1, right);return root;}
}

这段代码定义了一个名为 Solution 的类,其中包含两个方法,用于将一个有序数组(升序)转换成一棵高度平衡的二叉搜索树(BST)。二叉搜索树的特性是左子树所有节点的值小于根节点的值,右子树所有节点的值大于根节点的值,且每个节点的左、右子树也分别是BST。下面是代码的详细解析:

  1. sortedArrayToBST(int[] nums) 方法:这是主要的接口方法,接收一个有序数组 nums 作为参数,然后调用辅助方法 helper 来完成转换工作,最终返回构建好的BST的根节点。

  2. helper(int[] nums, int left, int right) 方法:这是一个递归辅助方法,用于实际构建BST。

    • 输入参数nums 是原始有序数组,leftright 分别表示当前子数组的左右边界索引。
    • 终止条件:如果 left > right,表示当前子数组为空,没有节点可构建,因此返回 null
    • 选择根节点:为了构建高度平衡的BST,总是选择中间位置(或中间偏左,这里取中间下标 mid = (left + right) / 2)的元素作为根节点的值,这样做可以保证树尽量平衡。注意,当 leftright 为偶数时,mid 实际上取的是中间两个数中左边的那个。
    • 递归构建左右子树:以 mid 为界,分别对左半部分 [left, mid - 1] 和右半部分 [mid + 1, right] 递归调用 helper 方法,构建当前节点的左子树和右子树。
    • 返回根节点:构建好左右子树后,返回当前子树的根节点。

通过这样的递归划分,每个子数组都会被处理成一个高度平衡的BST子树,最终整个数组转换成了一棵高度平衡的二叉搜索树。这种方法充分利用了有序数组的特性,保证了构建的BST不仅是正确的,而且高度平衡,提高了树的查询效率。

方法二:中序遍历,总是选择中间位置右边的数字作为根节点

class Solution {public TreeNode sortedArrayToBST(int[] nums) {return helper(nums, 0, nums.length - 1);}public TreeNode helper(int[] nums, int left, int right) {if (left > right) {return null;}// 总是选择中间位置右边的数字作为根节点int mid = (left + right + 1) / 2;TreeNode root = new TreeNode(nums[mid]);root.left = helper(nums, left, mid - 1);root.right = helper(nums, mid + 1, right);return root;}
}

这段代码与之前提供的解决方案非常相似,都是将一个有序数组(升序)转换为一棵高度平衡的二叉搜索树(BST)。主要区别在于选取中间元素的方式:之前的解决方案选取中间位置左边的数字作为根节点,而这里的代码选择的是中间位置右边的数字。下面是代码解析:

  1. sortedArrayToBST(int[] nums) 方法:此方法作为接口,接收一个有序数组 nums,然后调用辅助方法 helper 来构建平衡BST,并返回根节点。

  2. helper(int[] nums, int left, int right) 方法:这是一个递归辅助方法,用于递归构建BST。

    • 输入参数nums 是原始有序数组,leftright 分别表示当前考虑构建子树的数组范围。
    • 终止条件:当 left > right 时,表示当前区间为空,无需构建节点,直接返回 null
    • 选择根节点:与之前版本不同,这里通过 (left + right + 1) / 2 计算中间索引,目的是选择区间的中间位置右边的数作为根节点。这确保了当数组长度为奇数时,中间值取右侧;偶数时,同样偏向取右侧的值作为根。
    • 递归构建子树:基于选定的根节点值,分别对左半区间 [left, mid - 1] 和右半区间 [mid + 1, right] 递归调用 helper 方法,构建当前节点的左子树和右子树。
    • 返回根节点:构建完左右子树后,返回当前子树的根节点。

通过这样的递归过程,整个数组被均衡地分割并构建为一棵高度平衡的BST,其中每个节点的值都来自数组中的一个位置,且树保持了BST的性质(左子树所有节点值小于根节点值,右子树所有节点值大于根节点值)。选择中间偏右的元素作为根节点是实现平衡的一种方式,虽不如选取正中间那样绝对平衡,但在大多数情况下能保持较好的平衡性。

方法三:中序遍历,选择任意一个中间位置数字作为根节点

class Solution {Random rand = new Random();public TreeNode sortedArrayToBST(int[] nums) {return helper(nums, 0, nums.length - 1);}public TreeNode helper(int[] nums, int left, int right) {if (left > right) {return null;}// 选择任意一个中间位置数字作为根节点int mid = (left + right + rand.nextInt(2)) / 2;TreeNode root = new TreeNode(nums[mid]);root.left = helper(nums, left, mid - 1);root.right = helper(nums, mid + 1, right);return root;}
}

这段代码依然致力于将一个有序数组(升序)转换为一棵高度平衡的二叉搜索树(BST),但与之前的实现有所不同,它在选择中间元素作为根节点时引入了随机性,以提高算法在特定输入下的性能表现。下面是代码的详细解析:

  1. 类成员变量:定义了一个 Random 类型的成员变量 rand,用于生成随机数。

  2. sortedArrayToBST(int[] nums) 方法:此方法与之前的实现相同,作为对外接口,接收有序数组并调用 helper 方法构建BST。

  3. helper(int[] nums, int left, int right) 方法:这个递归辅助方法负责实际的转换工作,其参数含义也保持一致。不同之处在于如何选择中间元素:

    • 随机选择中间位置:这里使用公式 (left + right + rand.nextInt(2)) / 2 来确定中间位置的索引。rand.nextInt(2) 会返回0或1,加上 leftright 后除以2,实质上会在左侧的中间位置和右侧的中间位置之间随机选择一个索引作为根节点。这种方法在理论上可以避免在特定输入数据下构造出极端不平衡的BST,比如当有序数组本身就是近乎有序的情况下,传统的总是选择中间位置作为根节点的方法可能导致构造出来的BST极度倾斜。通过随机化选择,可以使得构造的BST在统计学意义上更加平衡,提高树的操作效率,如查找、插入等。
  4. 构建左右子树:与之前的实现相同,根据选定的中间位置索引,递归地构建当前节点的左子树和右子树。

通过这种方式,尽管每次运行时可能生成不同的BST(因为根节点的选择是随机的),但整体上仍然能保证构建出的BST高度平衡,同时在一定程度上优化了在特定输入下的性能表现,特别是对于那些可能导致递归方法偏向构建非平衡树的特殊排序数组。

538. 把二叉搜索树转换为累加树

反序中序遍历

class Solution {int sum = 0;public TreeNode convertBST(TreeNode root) {if (root != null) {convertBST(root.right);sum += root.val;root.val = sum;convertBST(root.left);}return root;}
}

这段代码定义了一个名为 Solution 的类,其中包含一个方法 convertBST,该方法旨在将一个二叉搜索树(BST)转换成一个累加树。累加树是一种特殊的二叉树,其中每个节点的值等于原来的节点值加上所有大于它的节点值(在原BST中)。具体实现细节如下:

  • 类成员变量:

    • sum:这是一个整型成员变量,初始化为0,用于在遍历过程中累加节点值。
  • convertBST(TreeNode root) 方法

    • 输入参数:root 是二叉搜索树的根节点。
    • 返回值:返回转换后的二叉搜索树的根节点,现在它变成了一棵累加树。

方法内部逻辑遵循后序遍历的顺序(右子树 -> 根节点 -> 左子树),这是解决此类问题的关键,原因如下:

  1. 先遍历右子树:由于BST的性质(左子树的所有节点小于根节点,右子树的所有节点大于根节点),先访问右子树意味着我们从最大的节点开始累加,这符合累加树的要求。
  2. 累加当前节点值:在访问完当前节点的右子树后,将当前节点的值与已累加的值相加,然后更新当前节点的值。
  3. 遍历左子树:最后遍历左子树,这样在访问左子树的每个节点时,它们都会得到已经更新过的父节点及父节点右边所有节点的累加和。

通过这样的递归过程,整个BST被转换成了累加树,且每个节点的值都正确反映了累加的规则。最后,该方法返回转换后的树的根节点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/19150.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言:从键盘输入若干行字符(每行长度不等),输入后把它们存储到一磁盘文件中。再从该文件中读入这些数据,将其中小写字母转换成大写字母后在显示屏上输出。

void load(char str[100]) {int i 0;FILE* pf fopen("count.txt", "r");if (pf NULL){perror("error:");return 1;}printf("把字符转成大写后\n");while (fscanf(pf,"%s",str)!EOF){for (i 0; str[i] ! \0; i){if (str[…

24V_2A_1.2MHZ|PCD0303升压恒频LCD背光源专用电路超小体积封装

概述 PCD0303是一个恒定频率&#xff0c;6针SOT23电流模式升压转换器用于小型低功耗应用。PCD0303 以1.2MHz切换&#xff0c;并且允许使用微小的&#xff0c;低成本电容器和电感器2mm或更小,内部软启动会产生较小的涌入电流延长电池寿命。PCD0303具有自动切换至轻负载下的脉冲…

磁带存储:“不老的传说”依然在继续

现在是一个数据指数增长的时代&#xff0c;根据IDC数据预测&#xff0c;2025年全世界将产生175ZB的数据。 这里面大部分数据是不需要存储的&#xff0c;在2025预计每年需要存储11ZB的数据。换算个容易理解的说法&#xff0c;1ZB是10^18Bytes, 相当于要写5556万块容量18TB的硬盘…

探数API分享-全球电价一览:谁最高,谁最低?

全球家庭用电价格的平均水平约为0.139美元/千瓦时&#xff0c;这是根据2021年12月的统计数据得出的。在这个平均水平之上&#xff0c;有一些国家的家庭用电价格远超过这个数值&#xff0c;特别是在欧洲的一些发达国家。 丹麦、荷兰、德国、英国、西班牙、比利时等国家的家庭用…

6.S081的Lab学习——Lab5: xv6 lazy page allocation

文章目录 前言一、Eliminate allocation from sbrk() (easy)解析&#xff1a; 二、Lazy allocation (moderate)解析&#xff1a; 三、Lazytests and Usertests (moderate)解析&#xff1a; 总结 前言 一个本硕双非的小菜鸡&#xff0c;备战24年秋招。打算尝试6.S081&#xff0…

快手自动私信获客软件,精准定位潜在客户

在当今数字化营销时代&#xff0c;短视频平台已成为企业与个人品牌不可忽视的流量宝地。快手作为国内领先的短视频社交平台&#xff0c;汇聚了庞大的用户群体和丰富的兴趣社区&#xff0c;为各类商家、创作者提供了无限商机。如何在快手平台上高效引流获客&#xff0c;实现精准…

JAVA-->方法的使用详解

JAVA–>方法的使用详解 1.方法的概念及使用 1.1 什么是方法 : 方法就是一个代码片段. 类似于 C 语言中的 “函数”。 1.2 方法定义 / 方法定义 修饰符 返回值类型 方法名称([参数类型 形参 ...]){方法体代码;[return 返回值]; }判断是否为闰年 public class Method{ //…

JDBC使用步骤-小白入门

一.JDBC开发流程 加载并注册JDBC驱动创建数据库连接创建Statement对象遍历查询结果关闭连接,释放资源 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement;public class StandardJDBCSample {public static …

opencv进阶 ——(七)图像处理之寸照换背景

寸照换背景&#xff0c;通常指的是将个人证件照片的背景色更换为另一种颜色&#xff0c;如白色、蓝色或红色等&#xff0c;以满足不同用途的要求。例如&#xff0c;护照照片通常要求白色背景&#xff0c;而身份证照片可能需要蓝色背景。这个过程通常涉及到图像处理技术&#xf…

【国产中颖】SH79F9202U单片机驱动LCD段码液晶学习笔记

1. 引言 因新公司之前液晶数显表产品单片机一直用的是 C51单片机(SH79F9202U9)&#xff0c;本人之前没有接触过这款单片机&#xff0c;为了维护老产品不得不重新研究研究这款单片机。 10位ADC LCD的增强型8051微控制器 SH79F9202是一种高速高效率8051可兼容单片机。在同样振…

构造+模拟,CF1148C. Crazy Diamond

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 Problem - 1148C - Codeforces 二、解题报告 1、思路分析 题目提示O(5n)的解法了&#xff0c;事实上我们O(3n)就能解决&#xff0c;关键在于1&#xff0c;n的处理 我们读入数据a[]&#xff0c;代表初始数组…

继电器的选型和英应用

如何保证信号的稳定&#xff1f; 怎么消除继电器触点的电弧&#xff1f; 危害&#xff1a; 继电器的触点在动作时容易产生电弧&#xff0c;电弧具有热效应容易导致触点烧蚀粘接&#xff0c;缩短继电器的寿命&#xff0c;并且产生电弧的过程中会对外进行电磁辐射&#xff0c;…

GoFly框架快速新增接口/上手写代码

拿到一个新框架大家可能无从下手&#xff0c;因为你对框架设计思路、结构不了解&#xff0c;从而产生恐惧&#xff0c;所以我们框架是通过简单可视化界面安装&#xff0c;安装后即可看到效果&#xff0c;然后点击先点点看各个功能&#xff0c;看现有的功能是怎么写的&#xff0…

【错误记录】HarmonyOS 运行报错 ( Failure INSTALL_PARSE_FAILED_USESDK_ERROR )

文章目录 一、报错信息二、问题分析三、解决方案 一、报错信息 在 DevEco Studio 中 , 使用 远程设备 , 向 P40 Failure[INSTALL_PARSE_FAILED_USESDK_ERROR] compileSdkVersion and releaseType of the app do not match the apiVersion and releaseType on the device. 二、…

ABB 控制柜

1,主计算机:相当于电脑的主机,用于存放系统和数据,需要24V直流电才能工作。执行用户编写的程序,控制机器人进行响应的动作。主计算机有很多接口,比如与编程PC连接的服务网口、用于连接示教器的网口、连接轴计算机板的接口、连接安全面板的接口、不同的现场总线卡接口(比…

OrangePi AIpro测评

文章目录 1、外观部分2、系统初探3、AI性能体验4、总结 首先非常感谢csdn以及香橙派能够提供这样一个平台&#xff0c;可以测试OrangePi AIpro这样一块开发板&#xff0c;这块板子给我的感觉还是非常不错的&#xff0c;非常适合用来作为嵌入式学习的板子&#xff0c;性能也达到…

什么是边缘计算网关?工业方向应用有哪些?天拓四方

在数字化时代&#xff0c;信息的传输与处理变得愈发重要&#xff0c;而其中的关键节点之一便是边缘计算网关。这一先进的网络设备&#xff0c;不仅扩展了云端功能至本地边缘设备&#xff0c;还使得边缘设备能够自主、快速地响应本地事件&#xff0c;提供了低延时、低成本、隐私…

matlab工具使用记录-编辑器和命令行窗口分开还原

工具&#xff1a;matlab2021b 场景&#xff1a;在使用软件的过程中&#xff0c;我们误操作将matlab的编辑器单独出来了。这时候对软件进行各种操作都还原不回去。 matlab中编辑器和命令行窗口分开了如下图所示。 这时候只需要使用快捷键在编辑器窗口按CtrlshiftD&#xff0c;…

linux Inodes满导致数据库宕机

项目经理反馈集群环境中有个节点无法使用了需要支援下&#xff0c;同时发过来截图说明磁盘还是有空的。 登录系统后直接发现问题 orcl2:/home/oracledb2> sqlplus / as sysdba SQL*Plus: Release 11.2.0.4.0 Production on Wed May 29 13:59:21 2024 Copyright (c) 1982,…

摩尔线程MTT S4000 AI GPU助力30亿参数大模型训练,性能比肩英伟达同类解决方案

中国国产GPU制造商摩尔线程(Moore Threads)在AI加速器领域取得了显著进展&#xff0c;其最新推出的MTT S4000 AI GPU在训练大规模语言模型时表现突出&#xff0c;据称相较于其前代产品有着显著的性能提升。根据cnBeta的报道&#xff0c;搭载S4000 GPU的全新“酷鹅千卡智能计算集…