ZhipuAI/chatglm3-6b 模型文件地址
ChatGLM3 代码仓库
ChatGLM3 技术文档
硬件环境
最低要求:
为了能够流畅运行 Int4 版本的 ChatGLM3-6B,最低的配置要求:
内存:>= 8GB
显存: >= 5GB(1060 6GB,2060 6GB)
为了能够流畅运行 FP16 版本的,ChatGLM3-6B,最低的配置要求:
内存:>= 16GB
显存: >= 13GB(4080 16GB)
Mac开发者无需关注GPU的限制。对于搭载了 Apple Silicon 或者 AMD GPU 的 Mac,可以使用 MPS 后端来在 GPU 上运行 ChatGLM3-6B。需要参考 Apple 的 官方说明 安装 PyTorch-Nightly(正确的版本号应该是2.x.x.dev2023xxxx,而不是 2.x.x)。
如果使用CPU加载,可以忽略显存的要求,但是速度非常慢
软件环境
Python环境
请开发者按照仓库中的requirements.txt来安装对应的依赖,并需要注意:
python
版本推荐3.10 - 3.11
transformers
库版本推荐为 4.36.2
torch
推荐使用 2.0 及以上的版本,以获得最佳的推理性能
源码安装
克隆代码和模型
模型基础运行代码已经上传到 github 和 SwanHub 两个平台,两个平台的信息同步。开发者通过以下方式下载模型代码。
-
从 github 下载源码
git clone https://github.com/THUDM/ChatGLM3.git
-
从 SwanHub 下载源码
git clone https://swanhub.co/ZhipuAI/ChatGLM3.git
通过以下方式下载模型文件
-
下载模型文件前请先确保`git lfs`命令已安装,安装教程请参考这里。
-
模型文件已上传至 Huggingface, Modelsope , SwanHub 三个平台,用户可以快速安装模型。
git lfs install git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
git lfs install git clone https://swanhub.co/ZhipuAI/chatglm3-6b.gi
-
若使用 Huggingface 下载模型
git lfs install
git clone https://huggingface.co/THUDM/chatglm3-6b.git
-
若使用 Modelscope 下载模型
git lfs install
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
-
若使用 SwanHub 下载模型
git lfs install
git clone https://swanhub.co/ZhipuAI/chatglm3-6b.git
安装依赖
使用 pip 安装依赖:
cd ChatGLM3
pip install -r requirements.txt
运行demo
使用本地模型加载并使用命令行来问答
python basic_demo/cli_demo.py
使用本地模型加载并使用web_demo来问答
python basic_demo/web_demo_gradio.py
通过以下命令启动基于 Gradio 的网页版 demo
python basic_demo/web_demo_streamlit.py