Kaggle——First Machine Learning Model

kaggle(需要魔法才能访问):https://www.kaggle.com/
需要下载的数据集:melb_data.csv、train.csv(已放在资源里面)

First Machine Learning Model
Selecting Data for Modeling

#Selecting Data for Modeling
import pandas as pd
melbourne_file_path=r"G:\Kaggle\Datasets\archive\melb_data.csv"
melbourne_data=pd.read_csv(melbourne_file_path)
#查看数据集中所有列的列表,这是通过 DataFrame 的 columns 属性完成的
melbourne_data.columns
# dropna drops missing values (think of na as "not available")
#dropna 删除缺失值(将 na 视为“不可用”)
melbourne_data = melbourne_data.dropna(axis=0)
#Selecting The Prediction Target
#选择我们想要预测的列,这称为预测目标y
y=melbourne_data.Price
#Choosing "Features"
#输入到模型中(随后用于进行预测)的列称为“特征”
melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'Lattitude', 'Longtitude']
#X
X = melbourne_data[melbourne_features]
#describe方法
X.describe()
RoomsBathroomLandsizeLattitudeLongtitude
count6196.0000006196.0000006196.0000006196.0000006196.000000
mean2.9314071.576340471.006940-37.807904144.990201
std0.9710790.711362897.4498810.0758500.099165
min1.0000001.0000000.000000-38.164920144.542370
25%2.0000001.000000152.000000-37.855438144.926198
50%3.0000001.000000373.000000-37.802250144.995800
75%4.0000002.000000628.000000-37.758200145.052700
max8.0000008.00000037000.000000-37.457090145.526350
#head()方法
X.head()
RoomsBathroomLandsizeLattitudeLongtitude
121.0156.0-37.8079144.9934
232.0134.0-37.8093144.9944
441.0120.0-37.8072144.9941
632.0245.0-37.8024144.9993
721.0256.0-37.8060144.9954

Building Your Model

#Building Your Model
# 构建和使用模型的步骤是:
# 定义
# 拟合
# 预测
# 评估
from sklearn.tree import DecisionTreeRegressor
#定义模型
melbourne_model=DecisionTreeRegressor(random_state=1)
#拟合
melbourne_model.fit(X,y)
DecisionTreeRegressor(random_state=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
DecisionTreeRegressor(random_state=1)
print("Making predictions for the following 5 houses:")
print(X.head())
print("The predictions are")
print(melbourne_model.predict(X.head()))
Making predictions for the following 5 houses:Rooms  Bathroom  Landsize  Lattitude  Longtitude
1      2       1.0     156.0   -37.8079    144.9934
2      3       2.0     134.0   -37.8093    144.9944
4      4       1.0     120.0   -37.8072    144.9941
6      3       2.0     245.0   -37.8024    144.9993
7      2       1.0     256.0   -37.8060    144.9954
The predictions are
[1035000. 1465000. 1600000. 1876000. 1636000.]

Exercise First Machine Learning Model

#Exercise: First Machine Learning Model Exercises
import pandas as pd
iowa_file_path = r"G:\Kaggle\Datasets\archive\train.csv"
home_data = pd.read_csv(iowa_file_path)
#Step 1: Specify Prediction Target
print(home_data.columns)
y = home_data.SalePrice
#Step 2: Create X
feature_names = ["LotArea","YearBuilt","1stFlrSF","2ndFlrSF","FullBath","BedroomAbvGr","TotRmsAbvGrd"]
X=home_data[feature_names]
#Review Data在构建模型之前,快速浏览一下 X 以验证它看起来是否合理
print(X.describe())
print(X.head())
#Step 3: Specify and Fit Model
from sklearn.tree import DecisionTreeRegressor
#specify the model
iowa_model = DecisionTreeRegressor(random_state=1)
# Fit the model
iowa_model.fit(X,y)
#Step 4: Make Predictions
predictions = iowa_model.predict(X)
print(predictions)
Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street','Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig','LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType','HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd','RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType','MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual','BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1','BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating','HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF','LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath','HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual','TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType','GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual','GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF','EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC','Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType','SaleCondition', 'SalePrice'],dtype='object')LotArea    YearBuilt     1stFlrSF     2ndFlrSF     FullBath  \
count    1460.000000  1460.000000  1460.000000  1460.000000  1460.000000   
mean    10516.828082  1971.267808  1162.626712   346.992466     1.565068   
std      9981.264932    30.202904   386.587738   436.528436     0.550916   
min      1300.000000  1872.000000   334.000000     0.000000     0.000000   
25%      7553.500000  1954.000000   882.000000     0.000000     1.000000   
50%      9478.500000  1973.000000  1087.000000     0.000000     2.000000   
75%     11601.500000  2000.000000  1391.250000   728.000000     2.000000   
max    215245.000000  2010.000000  4692.000000  2065.000000     3.000000   BedroomAbvGr  TotRmsAbvGrd  
count   1460.000000   1460.000000  
mean       2.866438      6.517808  
std        0.815778      1.625393  
min        0.000000      2.000000  
25%        2.000000      5.000000  
50%        3.000000      6.000000  
75%        3.000000      7.000000  
max        8.000000     14.000000  LotArea  YearBuilt  1stFlrSF  2ndFlrSF  FullBath  BedroomAbvGr  \
0     8450       2003       856       854         2             3   
1     9600       1976      1262         0         2             3   
2    11250       2001       920       866         2             3   
3     9550       1915       961       756         1             3   
4    14260       2000      1145      1053         2             4   TotRmsAbvGrd  
0             8  
1             6  
2             6  
3             7  
4             9  
[208500. 181500. 223500. ... 266500. 142125. 147500.]
#Exercise: First Machine Learning Model
#Step 1: Specify Prediction Target
print(home_data.columns)
y = home_data.SalePrice
Index(['Id', 'MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street','Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig','LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType','HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd','RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType','MasVnrArea', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual','BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1','BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating','HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF','LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath','HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual','TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType','GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual','GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF','EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC','Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType','SaleCondition', 'SalePrice'],dtype='object')
#Step 2: Create X
feature_names = ["LotArea","YearBuilt","1stFlrSF","2ndFlrSF","FullBath","BedroomAbvGr","TotRmsAbvGrd"]
X=home_data[feature_names]
#Review Data在构建模型之前,快速浏览一下 X 以验证它看起来是否合理
print(X.describe())
print(X.head())
             LotArea    YearBuilt     1stFlrSF     2ndFlrSF     FullBath  \
count    1460.000000  1460.000000  1460.000000  1460.000000  1460.000000   
mean    10516.828082  1971.267808  1162.626712   346.992466     1.565068   
std      9981.264932    30.202904   386.587738   436.528436     0.550916   
min      1300.000000  1872.000000   334.000000     0.000000     0.000000   
25%      7553.500000  1954.000000   882.000000     0.000000     1.000000   
50%      9478.500000  1973.000000  1087.000000     0.000000     2.000000   
75%     11601.500000  2000.000000  1391.250000   728.000000     2.000000   
max    215245.000000  2010.000000  4692.000000  2065.000000     3.000000   BedroomAbvGr  TotRmsAbvGrd  
count   1460.000000   1460.000000  
mean       2.866438      6.517808  
std        0.815778      1.625393  
min        0.000000      2.000000  
25%        2.000000      5.000000  
50%        3.000000      6.000000  
75%        3.000000      7.000000  
max        8.000000     14.000000  LotArea  YearBuilt  1stFlrSF  2ndFlrSF  FullBath  BedroomAbvGr  \
0     8450       2003       856       854         2             3   
1     9600       1976      1262         0         2             3   
2    11250       2001       920       866         2             3   
3     9550       1915       961       756         1             3   
4    14260       2000      1145      1053         2             4   TotRmsAbvGrd  
0             8  
1             6  
2             6  
3             7  
4             9  
#Step 3: Specify and Fit Model
from sklearn.tree import DecisionTreeRegressor
#specify the model
iowa_model = DecisionTreeRegressor(random_state=1)
# Fit the model
iowa_model.fit(X,y)
DecisionTreeRegressor(random_state=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
DecisionTreeRegressor(random_state=1)
#Step 4: Make Predictions
predictions = iowa_model.predict(X)
print(predictions)
[208500. 181500. 223500. ... 266500. 142125. 147500.]

Model Validation 模型验证

# Model Validation 模型验证
import pandas as pd
# load data加载数据
melbourne_file_path = r"G:\Kaggle\Datasets\archive\melb_data.csv"
melbourne_data = pd.read_csv(melbourne_file_path) 
# Filter rows with missing price values过滤缺少价格值的行
filtered_melbourne_data = melbourne_data.dropna(axis=0)
# Choose target and features选择目标和特征
y = filtered_melbourne_data.Price
melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'BuildingArea', 'YearBuilt', 'Lattitude', 'Longtitude']
X = filtered_melbourne_data[melbourne_features]
#模型的选择
from sklearn.tree import DecisionTreeRegressor
# Define model
melbourne_model = DecisionTreeRegressor()
# Fit model
melbourne_model.fit(X, y)
DecisionTreeRegressor()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
DecisionTreeRegressor()
#calculate the mean absolute error计算平均绝对误差
from sklearn.metrics import mean_absolute_error
predicted_home_prices = melbourne_model.predict(X)
mean_absolute_error(y, predicted_home_prices)
434.71594577146544
#scikit-learn 库有一个函数 train_test_split 将数据分成两部分
#我们将使用其中一些数据作为训练数据来拟合模型,并使用其他数据作为验证数据来计算mean_absolute_error
from sklearn.model_selection import train_test_split
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state = 0)
# Define model
melbourne_model = DecisionTreeRegressor()
# Fit model
melbourne_model.fit(train_X, train_y)
# get predicted prices on validation data根据验证数据获取预测价格
val_predictions = melbourne_model.predict(val_X)
print(mean_absolute_error(val_y, val_predictions))
263704.735958683

Exercise: Model Validation

#Exercise: Model Validation
import pandas as pd
from sklearn.tree import DecisionTreeRegressor# Path of the file to read
iowa_file_path = r"G:\Kaggle\Datasets\archive\train.csv"home_data = pd.read_csv(iowa_file_path)
y = home_data.SalePrice
feature_columns = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd']
X = home_data[feature_columns]# Specify Model
iowa_model = DecisionTreeRegressor()
# Fit Model
iowa_model.fit(X, y)print("First in-sample predictions:", iowa_model.predict(X.head()))
print("Actual target values for those homes:", y.head().tolist())
First in-sample predictions: [208500. 181500. 223500. 140000. 250000.]
Actual target values for those homes: [208500, 181500, 223500, 140000, 250000]
#Exercise: Model Validation
#Step 1: Split Your Data
from sklearn.model_selection import train_test_split
train_X, val_X, train_y, val_y = train_test_split(X,y,random_state=1)
#Step 2: Specify and Fit the Model
# Specify the model
iowa_model = DecisionTreeRegressor(random_state=1)
# Fit iowa_model with the training data.
iowa_model.fit(train_X,train_y)
DecisionTreeRegressor(random_state=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
DecisionTreeRegressor(random_state=1)
#Step 3: Make Predictions with Validation data使用验证数据进行预测
# Predict with all validation observations
val_predictions = iowa_model.predict(val_X)
# print the top few validation predictions
print(val_X.head())
# print the top few actual prices from validation data
print(val_y.head())
      LotArea  YearBuilt  1stFlrSF  2ndFlrSF  FullBath  BedroomAbvGr  \
258     12435       2001       963       829         2             3   
267      8400       1939      1052       720         2             4   
288      9819       1967       900         0         1             3   
649      1936       1970       630         0         1             1   
1233    12160       1959      1188         0         1             3   TotRmsAbvGrd  
258              7  
267              8  
288              5  
649              3  
1233             6  
258     231500
267     179500
288     122000
649      84500
1233    142000
Name: SalePrice, dtype: int64
#Step 4: Calculate the Mean Absolute Error in Validation Data
#步骤 4:计算验证数据中的平均绝对误差
from sklearn.metrics import mean_absolute_error
val_mae = mean_absolute_error(val_y,val_predictions)
#print(val_mae)
29652.931506849316

Underfitting and Overfitting

#Underfitting and Overfitting
#欠拟合和过拟合
from sklearn.metrics import mean_absolute_error
from sklearn.tree import DecisionTreeRegressordef get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y):model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0)model.fit(train_X, train_y)preds_val = model.predict(val_X)mae = mean_absolute_error(val_y, preds_val)return(mae)
import pandas as pd  
# Load data
melbourne_file_path = r"G:\Kaggle\Datasets\archive\melb_data.csv"
melbourne_data = pd.read_csv(melbourne_file_path) 
# Filter rows with missing values
filtered_melbourne_data = melbourne_data.dropna(axis=0)
# Choose target and features
y = filtered_melbourne_data.Price
melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'BuildingArea', 'YearBuilt', 'Lattitude', 'Longtitude']
X = filtered_melbourne_data[melbourne_features]from sklearn.model_selection import train_test_split# split data into training and validation data, for both features and target
train_X, val_X, train_y, val_y = train_test_split(X, y,random_state = 0)
# compare MAE with differing values of max_leaf_nodes
#将 MAE 与 max_leaf_nodes 的不同值进行比较
for max_leaf_nodes in [5, 50, 500, 5000]:my_mae = get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y)print("Max leaf nodes: %d  \t\t Mean Absolute Error:  %d" %(max_leaf_nodes, my_mae))
Max leaf nodes: 5  		 Mean Absolute Error:  347380
Max leaf nodes: 50  		 Mean Absolute Error:  258171
Max leaf nodes: 500  		 Mean Absolute Error:  243495
Max leaf nodes: 5000  		 Mean Absolute Error:  255575
#之前用于加载数据的代码
import pandas as pd
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
# Path of the file to read
iowa_file_path = r"G:\Kaggle\Datasets\archive\train.csv"
home_data = pd.read_csv(iowa_file_path)
# Create target object and call it y
y = home_data.SalePrice
# Create X
features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd']
X = home_data[features]# Split into validation and training data
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)# Specify Model
iowa_model = DecisionTreeRegressor(random_state=1)
# Fit Model
iowa_model.fit(train_X, train_y)# Make validation predictions and calculate mean absolute error
val_predictions = iowa_model.predict(val_X)
val_mae = mean_absolute_error(val_predictions, val_y)
print("Validation MAE: {:,.0f}".format(val_mae))
Validation MAE: 29,653

Exercise: Underfitting and Overfitting

#Exercise: Underfitting and Overfitting
#Exercises
def get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y):model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0)model.fit(train_X, train_y)preds_val = model.predict(val_X)mae = mean_absolute_error(val_y, preds_val)return(mae)
#Step 1: Compare Different Tree Sizes
candidate_max_leaf_nodes = [5, 25, 50, 100, 250, 500]
# Write loop to find the ideal tree size from candidate_max_leaf_nodes
for leaf_size in candidate_max_leaf_nodes:leaf_size = get_mae(leaf_size, train_X, val_X, train_y, val_y)# Store the best value of max_leaf_nodes (it will be either 5, 25, 50, 100, 250 or 500)
best_tree_size = min(scores, key=scores.get)
#Step 2: Fit Model Using All Data
# Fill in argument to make optimal size and uncomment
final_model = DecisionTreeRegressor(max_leaf_nodes=best_tree_size,random_state=1)
# fit the final model and uncomment the next two lines
final_model.fit(X,y)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/15168.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 学习 关于引用

🙋本文主要讲讲C的引用 是基础入门篇~ 本文是阅读C Primer 第五版的笔记 🌈 关于引用 几个比较重要的点 🌿引用相当于为一个已经存在的对象所起的另外一个名字 🌞 定义引用时,程序把引用和它的初始值绑定(b…

【MySQL精通之路】InnoDB磁盘I/O和文件空间管理(11)

主博客: 【MySQL精通之路】InnoDB存储引擎-CSDN博客 目录 1.InnoDB磁盘I/O 1.1 预读 1.2 双写缓冲区 2.文件空间管理 2.1 Pages, Extents, Segments, and Tablespaces(很重要) 2.2 配置保留文件段页面的百分比 2.3 页与表行的关系 …

R可视化:可发表的Y轴截断图

Y轴截断图by ggprism Y轴截断图by ggprism 介绍 ggplot2绘制Y轴截断图by ggprism加载R包 knitr::opts_chunk$set(message = FALSE, warning = FALSE)library(tidyverse) library(ggprism) library(patchwork)rm(list = ls()) options(stringsAsFactors = F) options(future.…

2024年高考考务人员网上培训参考答案

第1部分:单选题 1. 关于试卷保密室负责人职责,以下说法不正确的是(B) [2分] A. 负责试卷的接收、保管和发放工作 B. 试卷保密室内屋门锁钥匙和铁柜门锁钥匙必须由同一人保管 C. 试卷接收和发放应当当面清点试卷袋数量&#…

Go语言的中间件(middleware)是如何实现的?

文章目录 Go语言的中间件(Middleware)是如何实现的?中间件的工作原理中间件的实现步骤示例代码总结 Go语言的中间件(Middleware)是如何实现的? 在Go语言中,中间件(Middleware&#…

springboot实现多开发环境匹配置(超级简洁没废话)

首先logbok-spring.xml里面的内容 <?xml version"1.0" encoding"UTF-8"?> <configuration><!-- 开发、测试环境 --><springProfile name"dev,test"><include resource"org/springframework/boot/logging/log…

探索现代AI生成模型的底层原理:大语言模型、视频模型与图片模型

探索现代AI生成模型的底层原理&#xff1a;大语言模型、视频模型与图片模型 引言大语言模型&#xff08;Large Language Models&#xff09;底层原理先进的模型实例应用与影响挑战与未来发展 视频生成模型底层原理先进的模型实例应用与影响挑战与未来发展 图片生成模型底层原理…

Java并发面试题,多线程通关秘籍

【知识点记录】- 不能不知道的知识点 &#x1f604;生命不息&#xff0c;写作不止 &#x1f525; 继续踏上学习之路&#xff0c;学之分享笔记 &#x1f44a; 总有一天我也能像各位大佬一样 &#x1f3c6; 博客首页 怒放吧德德 To记录领地 &#x1f31d;分享学习心得&#xf…

算法设计与分析

一、分治法 二、回溯法 三、贪心法 四、动态规划法 分治法一分而治之 对于一个规模为n的问题&#xff0c;若该问题可以容易地解决&#xff08;比如说规模n较小&#xff09;则直接解决&#xff0c;否则将其分解为k个规模较小的子问题&#xff0c;这些子问题互相独立且与原问题形…

封装UUID

目录 1、 * 封装UUID 1.1、 * 从一个 UU64 恢复回一个 UUID 对象 1.2、 * 64进制表示的 UUID, 内容为 [\\-0-9a-zA-Z_] 1.3、 * 将紧凑格式的 UU16 字符串变成标准 UUID 格式的字符串 package com.my.blog.website.utils;

【数据结构与算法 | 基础篇】单向链表模拟栈

1. 前言 前文我们先后用单向循环链表&#xff0c;环形数组来模拟了队列. 队列的特点是先进先出. 队头移除元素&#xff0c;队尾添加元素. 所以需要两个指针控制.本文我们接下来提及如果和单向链表来模拟栈. 栈的特点是后进先出. 在栈顶压栈或弹栈. 另一侧不动的是栈底. 我们可…

range for

1. 基于范围的for循环语法 C11标准引入了基于范围的for循环特性&#xff0c;该特性隐藏了迭代器 的初始化和更新过程&#xff0c;让程序员只需要关心遍历对象本身&#xff0c;其语法也 比传统for循环简洁很多&#xff1a; for ( range_declaration : range_expression ) {loo…

基于SpringBoot设计模式之结构型设计模式

文章目录 介绍开始 介绍 结构型模式涉及到如何组合类和对象以获得更大的结构。结构型类模式采用继承机制来组合接口或实现。一个简单的例子是采用多重继承方法将两个以上的类组合成一个类&#xff0c;结果这个类包含了所有父类的性质。这一模式尤其有助于多个独立开发的类库协同…

【Linux】关于获取进程退出状态中的core dump标志补充

通过 wait/waitpid 可以获取子进程的退出状态, 从而判断其退出结果. 记录退出状态的 int 变量 status 的使用情况如下图所示: 如果是收到信号终止的话, 低 7 位为收到的终止信号, 而低第 8 位为 core dump 标志, core dump 标志有什么用呢? core dump 标志只存 0/1, 表示是否…

printf 模仿slf4j 的log.xxx效果

printf 模仿slf4j 的log.xxx效果 简介期待的效果颜色遇到的问题实际的效果代码实现使用效果图 简介 突然想玩一玩&#xff0c;能不能用printf实现slf4j里 的log.xxx 的效果。 性能是完全不考虑的&#xff0c;只要功能可用就好。 期待的效果 类似:info("这是第{}条日志…

ffmpeg-webrtc(metartc)给ffmpeg添加webrtc协议

这个是使用metrtc的库为ffmpeg添加webrtc传输协议&#xff0c;目前国内还有一个这样的开源项目&#xff0c;是杨成立大佬&#xff0c;大师兄他们在做&#xff0c;不过wili页面维护的不好&#xff0c;新手不知道如何使用&#xff0c;我专门对它做过介绍&#xff0c;另一篇博文&a…

不同类型水表计量技术的优缺点

1.单流束水表 1.1优点 (1)耐受悬浮固体。适用于硬水或悬浮颗粒物。 (2)多样性&#xff0c;可用性&#xff0c;容易找到需要的合适的表型。 (3)技术可靠&#xff0c;已使用了数十年。 (4)体积小&#xff0c;可以安装在狭小的空间里。 (5)13mm、15mm、20mm水表可能是市面…

CTFHUB技能树——SSRF(二)

目录 上传文件 ​FastCGI协议 Redis协议 上传文件 题目描述&#xff1a;这次需要上传一个文件到flag.php了.祝你好运 index.php与上题一样&#xff0c;使用POST请求的方法向flag.php传递参数 //flag.php页面源码 <?phperror_reporting(0);if($_SERVER["REMOTE_ADDR&…

Java面向对象程序设计-集合容器(toString方法)

以下是翁恺老师3.3.1集合容器的示范代码&#xff1a; class Value{ private int i; public void set(int i){this.ii;}public int get(){return i;}public String toString(){return ""i; } //注意这句的有无 }public class NoteBook {public static void ma…

python --- 第19课 面对对象(上)--- 纯干货

面对对象 程序是由数据和功能组合而成的对象构建起来的&#xff0c;对数据与函数绑定到一起&#xff0c;进行封装&#xff0c;能够更快速的开发程序&#xff0c;减少重复代码 class --- 类&#xff0c;类是对象的抽象化&#xff0c;具有相同特征或行为的事物的统称 类的定义…