卷积神经网络 (CNN)

计算机视觉最常见的机器学习模型体系结构之一是卷积神经网络 (CNN)。 CNN 使用筛选器从图像中提取数值特征图,然后将特征值馈送到深度学习模型中以生成标签预测。 例如,在图像分类方案中,标签表示图像的主要主题(换句话说,这是一张关于什么的图像?)。 你可以使用不同种类的水果(如苹果、香蕉和橙子)的图像训练一个 CNN 模型,使预测的标签是给定图像中的水果类型。

在 CNN 的训练过程中,筛选器内核最初是使用随机生成的权重值定义的。 然后,随着训练过程的进行,根据已知标签值评估模型预测,并调整筛选器权重以提高准确性。 最终,经过训练的水果图像分类模型使用能够最好地提取有助于识别不同种类水果特征的筛选器权重。
下图演示了图像分类模型的 CNN 的工作原理:

在这里插入图片描述
1、具有已知标签的图像(例如,0:苹果、1:香蕉或 2:橙子)将馈送到网络中以训练模型。
2、当每个图像通过网络馈送时,使用一个或多个筛选器从图像中提取特征。 筛选器内核最初是随机分配的权重,并生成称为特征图的数值数组。
3、特征图平展为特征值的一维数组。
4、特征值馈送到完全连接的神经网络中。
5、神经网络的输出层使用 softmax 或类似函数生成包含每个可能类的概率值的结果,例如 [0.2, 0.5, 0.3]。

在训练期间,将输出概率与实际类标签进行比较,例如,香蕉(类 1)的图像应具有值 [0.0, 1.0, 0.0]。 预测类分数与实际类分数之间的差异用于计算模型中的损失,并修改完全连接的神经网络中的权重和特征提取层中的筛选器内核,以减少损失。

训练过程会重复多个时期,直到学习到一组最优的权重。 然后,保存权重,模型可用于预测标签未知的新图像的标签。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/1457.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信有关白名单IP

一、商家支付 二、公众号

开启智慧之旅,AI与机器学习驱动的微服务设计模式探索

​🌈 个人主页:danci_ 🔥 系列专栏:《设计模式》 💪🏻 制定明确可量化的目标,坚持默默的做事。 🚀 转载自热榜文章🔥:探索设计模式的魅力:开启智慧…

基于SpringBoot + Vue实现的时装购物管理系统设计与实现+毕业论文+开题报告+答辩PPT

介绍 系统包含用户、管理员两个角色 管理员:首页、个人中心、用户管理、商品分类管理、颜色管理、商品信息管理、商品评价管理、系统管理、订单管理 用户:首页、个人中心、商品评价管理、我的收藏管理、订单管理 前台首页:首页、商品信息、商品资讯、个人中心、后台…

【MySQL】查询(进阶)

文章目录 前言1、新增2、聚合查询2.1聚合函数2.1.1count2.1.2sum2.1.3avg2.1.4max和min 2.2、GROUP BY子句2.3HAVING 3、联合查询/多表查询3.1内连接和外连接3.2自连接3.3子查询3.4合并查询 前言 在前面的内容中我们已经把查询的基本操作介绍的差不多了,接下来我们…

Llama 3 实测效果炸裂,一秒写数百字(附镜像站)

这几天大火的llama 3刚刚在https://askmanyai.cn上线了! 玩了一会儿,这个生成速度是真的亚麻呆住。文案写作和代码生成直接爽到起飞,以往gpt要写一两分钟的千字文,llama 3几秒钟就写完了。而且效果甚至感觉更好? 效果惊…

el-menu 有一级二级三级菜单

效果如下 菜单代码如下 <el-menu:default-active"menuDefaultActive"class"el-menu-box":text-color"menuTextColor":active-text-color"menuActiveTextColor":unique-opened"true"><!-- 一级菜单 --><tem…

二、python+前端 实现MinIO分片上传

python前端 实现MinIO分片上传 一、背景二、流程图三、代码 一、背景 问题一&#xff1a;前端 -> 后端 ->对象存储 的上传流程&#xff0c;耗费带宽。 解决方案&#xff1a;上传流程需要转化为 前端 -> 对象存储&#xff0c;节省上传带宽 问题二&#xff1a;如果使用…

Crypto量化高频体验总结

Crypto量化高频体验总结 人工智能与量化交易算法知识库 2024-04-21 21:02 美国 以下文章来源于Quant搬砖工 &#xff0c;作者quant搬砖队工头 Quant搬砖工. 稳健的收益要一点一点赚&#xff0c;量化的板砖要一块一块搬&#xff01; 前言 前两天在翻历史文章的时候&#xf…

【高阶数据结构】并查集 -- 详解

一、并查集的原理 1、并查集的本质和概念 &#xff08;1&#xff09;本质 并查集的本质&#xff1a;森林。 &#xff08;2&#xff09;概念 在一些应用问题中&#xff0c;需要将 n 个不同的元素划分成一些不相交的集合。 开始时&#xff0c;每个元素自成一个单元素集合&…

SpringBoot 集成Nacos注册中心和配置中心-支持自动刷新配置

SpringBoot 集成Nacos注册中心和配置中心-支持自动刷新配置 本文介绍SpringBoot项目集成Nacos注册中心和配置中心的步骤&#xff0c;供各位参考使用 1、配置pom.xml 文件 在pom.xml文件中定义如下配置和引用依赖&#xff0c;如下所示&#xff1a; <properties><pr…

buuctf之ciscn_2019_c_1

ciscn_2019_c_1 一、查看属性二、静态分析三、动态分析四、思路五、exp 一、查看属性 首先还是必要的查看属性环节&#xff1a; 可以知道该文件是一个x86架构下的64位小端ELF文件&#xff0c;开启了栈不可执行&#xff08;NX&#xff09; 执行一下&#xff0c;先有一个选择&…

ROS2 王牌升级:Fast-DDS 性能直接碾压 zeroMQ 「下」

以下内容为本人的学习笔记&#xff0c;如需要转载&#xff0c;请声明原文链接 微信公众号「ENG八戒」https://mp.weixin.qq.com/s/aU1l3HV3a9YnwNtC1mTiOA 性能比较 下面就以官网的测试数据为准&#xff0c;让我们一起来看看它们的性能差别到底怎样。 本次比较仅针对 Fast RT…

60道计算机二级模拟试题选择题(含答案和解析)

点击下载《60道计算机二级模拟试题选择题&#xff08;含答案和解析&#xff09;》 1. 前言 本文设计了一份针对计算机二级考试的选择题&#xff0c;旨在考察考生对计算机基础知识和应用技能的掌握情况。试题涵盖了计算机基础知识、操作系统、办公软件、计算机网络等多个方面&…

【CVPR2023】《A2J-Transformer:用于从单个RGB图像估计3D交互手部姿态的锚点到关节变换网络

这篇论文的标题是《A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation from a Single RGB Image》&#xff0c;作者是Changlong Jiang, Yang Xiao, Cunlin Wu, Mingyang Zhang, Jinghong Zheng, Zhiguo Cao, 和 Joey Tianyi Zhou…

polkit服务启动失败

使用systemctl 命令报错 Authorization not available. Check if polkit service is running or see debug message for more information. 查看polkit状态是失败的状态&#xff0c;报缺少libstdc.so.6 systemctl status polkit 需要安装libstdc.so.6库 先加载所有安装包 …

Java学习Go(入门)

下载Go 《官网下载golang》 直接点Download&#xff0c;然后根据你自己的操作系统进行下载&#xff0c;我这里以win10为例 安装go 默认安装到C:\Program Files\Go&#xff0c;这里我们可以选择安装到其他盘&#xff0c;也可以选择默认安装。初学者建议直接一路next。 安装完…

IMUGNSS的误差状态卡尔曼滤波器(ESKF)---更新过程

IMU&GNSS的误差状态卡尔曼滤波器&#xff08;ESKF&#xff09;---更新过程 ESKF的更新过程 ESKF的更新过程 前面介绍的是ESKF的运动过程&#xff0c;现在考虑更新过程。假设一个抽象的传感器能够对状态变量产生观测&#xff0c;其观测方程为抽象的h,那么可以写为 其中z为…

python爬虫笔记1

1 爬虫介绍 爬虫概述&#xff1a; 获取网页并提取和保存信息的自动化程序 1.获取网页 2.提取信息 css选择器 xpath 3.保存数据&#xff08;大数据时代&#xff09; 4.自动化 爬虫&#xff08;资产收集&#xff0c;信息收集&#xff09; 漏扫&#xff08;帮我发现漏洞&#xff…

使用Python比较两张人脸图像并获得准确度

使用 Python、OpenCV 和人脸识别模块比较两张图像并获得这些图像之间的准确度水平。 一、原理 使用Face Recognition python 模块来获取两张图像的128 个面部编码&#xff0c;并比较这些编码。比较结果返回 True 或 False。如果结果为True &#xff0c;那么两个图像将是相同的…

Python程序设计 字典

教学案例十 字典 1. 判断出生地 sfz.txt文件中存储了地区编码和地区名称 身份证的前6位为地区编码&#xff0c;可以在sfz.txt文件中查询到地区编号对应的地区名称 编写程序&#xff0c;输入身份证号&#xff0c;查询并显示对应的地区名称 若该地区编码不在文件中&#xff0c;…