LangChain API 2.0

转载整理自:https://api.python.langchain.com/en/latest/langchain_api_reference.html


文章目录

    • 1、langchain.agents
      • Classes
      • Functions
    • 2、langchain.callbacks
      • Classes
    • 3、langchain.chains
      • Classes
      • Functions
    • 4、langchain.embeddings
      • Classes
    • 5、langchain.evaluation
      • Classes
      • Functions
    • 6、langchain.hub
      • Functions
    • 7、langchain.indexes
      • Classes
    • 8、langchain.memory
      • Classes
      • Functions
    • 9、langchain.model_laboratory
      • Classes
    • 10、langchain.output_parsers
      • Classes
      • Functions
    • 11、langchain.retrievers
      • Classes
      • Functions
    • 12、langchain.runnables
      • Classes
    • 13、langchain.smith
      • Classes
      • Functions
    • 14、langchain.storage
      • Classes


1、langchain.agents

Agent is a class that uses an LLM to choose a sequence of actions to take.

In Chains, a sequence of actions is hardcoded. In Agents, a language model is used as a reasoning engine to determine which actions to take and in which order.

Agents select and use Tools and Toolkits for actions.

Class hierarchy:

BaseSingleActionAgent --> LLMSingleActionAgentOpenAIFunctionsAgentXMLAgentAgent --> <name>Agent  # Examples: ZeroShotAgent, ChatAgentBaseMultiActionAgent  --> OpenAIMultiFunctionsAgent

Main helpers:

AgentType, AgentExecutor, AgentOutputParser, AgentExecutorIterator,
AgentAction, AgentFinish

Classes

  • agents.agent.Agent
    [Deprecated] Agent that calls the language model and deciding the action.
  • agents.agent.AgentExecutor
    Agent that is using tools.
  • agents.agent.AgentOutputParser
    Base class for parsing agent output into agent action/finish.
  • agents.agent.BaseMultiActionAgent
    Base Multi Action Agent class.
  • agents.agent.BaseSingleActionAgent
    Base Single Action Agent class.
  • agents.agent.ExceptionTool
    Tool that just returns the query.
  • agents.agent.LLMSingleActionAgent
    [Deprecated] Base class for single action agents.
  • agents.agent.MultiActionAgentOutputParser
    Base class for parsing agent output into agent actions/finish.
  • agents.agent.RunnableAgent
    Agent powered by runnables.
  • agents.agent.RunnableMultiActionAgent
    Agent powered by runnables.
  • agents.agent_iterator.AgentExecutorIterator(…)
    Iterator for AgentExecutor.
  • agents.agent_toolkits.vectorstore.toolkit.VectorStoreInfo
    Information about a VectorStore.
  • agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit
    Toolkit for routing between Vector Stores.
  • agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit
    Toolkit for interacting with a Vector Store.
  • agents.agent_types.AgentType(value)
    [Deprecated] An enum for agent types.
  • agents.chat.base.ChatAgent
    [Deprecated] Chat Agent.
  • agents.chat.output_parser.ChatOutputParser
    Output parser for the chat agent.
  • agents.conversational.base.ConversationalAgent
    [Deprecated] An agent that holds a conversation in addition to using tools.
  • agents.conversational.output_parser.ConvoOutputParser
    Output parser for the conversational agent.
  • agents.conversational_chat.base.ConversationalChatAgent
    [Deprecated] An agent designed to hold a conversation in addition to using tools.
  • agents.conversational_chat.output_parser.ConvoOutputParser
    Output parser for the conversational agent.
  • agents.mrkl.base.ChainConfig(action_name, …)
    Configuration for chain to use in MRKL system.
  • agents.mrkl.base.MRKLChain
    [Deprecated] [Deprecated] Chain that implements the MRKL system.
  • agents.mrkl.base.ZeroShotAgent
    [Deprecated] Agent for the MRKL chain.
  • agents.mrkl.output_parser.MRKLOutputParser
    MRKL Output parser for the chat agent.
  • agents.openai_assistant.base.OpenAIAssistantAction
    AgentAction with info needed to submit custom tool output to existing run.
  • agents.openai_assistant.base.OpenAIAssistantFinish
    AgentFinish with run and thread metadata.
  • agents.openai_assistant.base.OpenAIAssistantRunnable
    Run an OpenAI Assistant.
  • agents.openai_functions_agent.agent_token_buffer_memory.AgentTokenBufferMemory
    Memory used to save agent output AND intermediate steps.
  • agents.openai_functions_agent.base.OpenAIFunctionsAgent
    [Deprecated] An Agent driven by OpenAIs function powered API.
  • agents.openai_functions_multi_agent.base.OpenAIMultiFunctionsAgent
    [Deprecated] An Agent driven by OpenAIs function powered API.
  • agents.output_parsers.json.JSONAgentOutputParser
    Parses tool invocations and final answers in JSON format.
  • agents.output_parsers.openai_functions.OpenAIFunctionsAgentOutputParser
    Parses a message into agent action/finish.
  • agents.output_parsers.openai_tools.OpenAIToolsAgentOutputParser
    Parses a message into agent actions/finish.
  • agents.output_parsers.react_json_single_input.ReActJsonSingleInputOutputParser
    Parses ReAct-style LLM calls that have a single tool input in json format.
  • agents.output_parsers.react_single_input.ReActSingleInputOutputParser
    Parses ReAct-style LLM calls that have a single tool input.
  • agents.output_parsers.self_ask.SelfAskOutputParser
    Parses self-ask style LLM calls.
  • agents.output_parsers.tools.ToolAgentAction
    Override init to support instantiation by position for backward compat.
  • agents.output_parsers.tools.ToolsAgentOutputParser
    Parses a message into agent actions/finish.
  • agents.output_parsers.xml.XMLAgentOutputParser
    Parses tool invocations and final answers in XML format.
  • agents.react.base.DocstoreExplorer(docstore)
    [Deprecated] Class to assist with exploration of a document store.
  • agents.react.base.ReActChain
    [Deprecated] [Deprecated] Chain that implements the ReAct paper.
  • agents.react.base.ReActDocstoreAgent
    [Deprecated] Agent for the ReAct chain.
  • agents.react.base.ReActTextWorldAgent
    [Deprecated] Agent for the ReAct TextWorld chain.
  • agents.react.output_parser.ReActOutputParser
    Output parser for the ReAct agent.
  • agents.schema.AgentScratchPadChatPromptTemplate
    Chat prompt template for the agent scratchpad.
  • agents.self_ask_with_search.base.SelfAskWithSearchAgent
    [Deprecated] Agent for the self-ask-with-search paper.
  • agents.self_ask_with_search.base.SelfAskWithSearchChain
    [Deprecated] [Deprecated] Chain that does self-ask with search.
  • agents.structured_chat.base.StructuredChatAgent
    [Deprecated] Structured Chat Agent.
  • agents.structured_chat.output_parser.StructuredChatOutputParser
    Output parser for the structured chat agent.
  • agents.structured_chat.output_parser.StructuredChatOutputParserWithRetries
    Output parser with retries for the structured chat agent.
  • agents.tools.InvalidTool
    Tool that is run when invalid tool name is encountered by agent.
  • agents.xml.base.XMLAgent
    [Deprecated] Agent that uses XML tags.

Functions

  • agents.agent_toolkits.conversational_retrieval.openai_functions.create_conversational_retrieval_agent(…)
    A convenience method for creating a conversational retrieval agent.
  • agents.agent_toolkits.vectorstore.base.create_vectorstore_agent(…)
    Construct a VectorStore agent from an LLM and tools.
  • agents.agent_toolkits.vectorstore.base.create_vectorstore_router_agent(…)
    Construct a VectorStore router agent from an LLM and tools.
  • agents.format_scratchpad.log.format_log_to_str(…)
    Construct the scratchpad that lets the agent continue its thought process.
  • agents.format_scratchpad.log_to_messages.format_log_to_messages(…)
    Construct the scratchpad that lets the agent continue its thought process.
  • agents.format_scratchpad.openai_functions.format_to_openai_function_messages(…)
    Convert (AgentAction, tool output) tuples into FunctionMessages.
  • agents.format_scratchpad.openai_functions.format_to_openai_functions(…)
    Convert (AgentAction, tool output) tuples into FunctionMessages.
  • agents.format_scratchpad.tools.format_to_tool_messages(…)
    Convert (AgentAction, tool output) tuples into FunctionMessages.
  • agents.format_scratchpad.xml.format_xml(…)
    Format the intermediate steps as XML.
  • agents.initialize.initialize_agent(tools, llm)
    [Deprecated] Load an agent executor given tools and LLM.
  • agents.json_chat.base.create_json_chat_agent(…)
    Create an agent that uses JSON to format its logic, build for Chat Models.
  • agents.loading.load_agent(path, **kwargs)
    [Deprecated] Unified method for loading an agent from LangChainHub or local fs.
  • agents.loading.load_agent_from_config(config)
    [Deprecated] Load agent from Config Dict.
  • agents.openai_functions_agent.base.create_openai_functions_agent(…)
    Create an agent that uses OpenAI function calling.
  • agents.openai_tools.base.create_openai_tools_agent(…)
    Create an agent that uses OpenAI tools.
  • agents.output_parsers.openai_tools.parse_ai_message_to_openai_tool_action(message)
    Parse an AI message potentially containing tool_calls.
  • agents.output_parsers.tools.parse_ai_message_to_tool_action(message)
    Parse an AI message potentially containing tool_calls.
  • agents.react.agent.create_react_agent(llm, …)
    Create an agent that uses ReAct prompting.
  • agents.self_ask_with_search.base.create_self_ask_with_search_agent(…)
    Create an agent that uses self-ask with search prompting.
  • agents.structured_chat.base.create_structured_chat_agent(…)
    Create an agent aimed at supporting tools with multiple inputs.
  • agents.tool_calling_agent.base.create_tool_calling_agent(…)
    Create an agent that uses tools.
  • agents.utils.validate_tools_single_input(…)
    Validate tools for single input.
  • agents.xml.base.create_xml_agent(llm, tools, …)
    Create an agent that uses XML to format its logic.

2、langchain.callbacks

Callback handlers allow listening to events in LangChain.

Class hierarchy:

BaseCallbackHandler --> <name>CallbackHandler  # Example: AimCallbackHandler

Classes

  • callbacks.streaming_aiter.AsyncIteratorCallbackHandler()
    Callback handler that returns an async iterator.
  • callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*)
    Callback handler that returns an async iterator.
  • callbacks.streaming_stdout_final_only.FinalStreamingStdOutCallbackHandler(*)
    Callback handler for streaming in agents.
  • callbacks.tracers.logging.LoggingCallbackHandler(logger)
    Tracer that logs via the input Logger.

3、langchain.chains

Chains are easily reusable components linked together.

Chains encode a sequence of calls to components like models, document retrievers, other Chains, etc., and provide a simple interface to this sequence.

The Chain interface makes it easy to create apps that are:

  • Stateful: add Memory to any Chain to give it state,
  • Observable: pass Callbacks to a Chain to execute additional functionality, like logging, outside the main sequence of component calls,
  • Composable: combine Chains with other components, including other Chains.

Class hierarchy:

Chain --> <name>Chain  # Examples: LLMChain, MapReduceChain, RouterChain

Classes

  • chains.api.base.APIChain
    Chain that makes API calls and summarizes the responses to answer a question.
  • chains.base.Chain
    Abstract base class for creating structured sequences of calls to components.
  • chains.combine_documents.base.AnalyzeDocumentChain
    Chain that splits documents, then analyzes it in pieces.
  • chains.combine_documents.base.BaseCombineDocumentsChain
    Base interface for chains combining documents.
  • chains.combine_documents.map_reduce.MapReduceDocumentsChain
    Combining documents by mapping a chain over them, then combining results.
  • chains.combine_documents.map_rerank.MapRerankDocumentsChain
    Combining documents by mapping a chain over them, then reranking results.
  • chains.combine_documents.reduce.AsyncCombineDocsProtocol(…)
    Interface for the combine_docs method.
  • chains.combine_documents.reduce.CombineDocsProtocol(…)
    Interface for the combine_docs method.
  • chains.combine_documents.reduce.ReduceDocumentsChain
    Combine documents by recursively reducing them.
  • chains.combine_documents.refine.RefineDocumentsChain
    Combine documents by doing a first pass and then refining on more documents.
  • chains.combine_documents.stuff.StuffDocumentsChain
    Chain that combines documents by stuffing into context.
  • chains.constitutional_ai.base.ConstitutionalChain
    Chain for applying constitutional principles.
  • chains.constitutional_ai.models.ConstitutionalPrinciple
    Class for a constitutional principle.
  • chains.conversation.base.ConversationChain
    Chain to have a conversation and load context from memory.
  • chains.conversational_retrieval.base.BaseConversationalRetrievalChain
    Chain for chatting with an index.
  • chains.conversational_retrieval.base.ChatVectorDBChain
    Chain for chatting with a vector database.
  • chains.conversational_retrieval.base.ConversationalRetrievalChain
    [Deprecated] Chain for having a conversation based on retrieved documents.
  • chains.conversational_retrieval.base.InputType
    Input type for ConversationalRetrievalChain.
  • chains.elasticsearch_database.base.ElasticsearchDatabaseChain
    Chain for interacting with Elasticsearch Database.
  • chains.flare.base.FlareChain
    Chain that combines a retriever, a question generator, and a response generator.
  • chains.flare.base.QuestionGeneratorChain
    Chain that generates questions from uncertain spans.
  • chains.flare.prompts.FinishedOutputParser
    Output parser that checks if the output is finished.
  • chains.hyde.base.HypotheticalDocumentEmbedder
    Generate hypothetical document for query, and then embed that.
  • chains.llm.LLMChain
    [Deprecated] Chain to run queries against LLMs.
  • chains.llm_checker.base.LLMCheckerChain
    Chain for question-answering with self-verification.
  • chains.llm_math.base.LLMMathChain
    Chain that interprets a prompt and executes python code to do math.
  • chains.llm_summarization_checker.base.LLMSummarizationCheckerChain
    Chain for question-answering with self-verification.
  • chains.mapreduce.MapReduceChain
    Map-reduce chain.
  • chains.moderation.OpenAIModerationChain
    Pass input through a moderation endpoint.
  • chains.natbot.base.NatBotChain
    Implement an LLM driven browser.
  • chains.natbot.crawler.Crawler()
    A crawler for web pages.
  • chains.natbot.crawler.ElementInViewPort
    A typed dictionary containing information about elements in the viewport.
  • chains.openai_functions.citation_fuzzy_match.FactWithEvidence
    Class representing a single statement.
  • chains.openai_functions.citation_fuzzy_match.QuestionAnswer
    A question and its answer as a list of facts each one should have a source.
  • chains.openai_functions.openapi.SimpleRequestChain
    Chain for making a simple request to an API endpoint.
  • chains.openai_functions.qa_with_structure.AnswerWithSources
    An answer to the question, with sources.
  • chains.prompt_selector.BasePromptSelector
    Base class for prompt selectors.
  • chains.prompt_selector.ConditionalPromptSelector
    Prompt collection that goes through conditionals.
  • chains.qa_generation.base.QAGenerationChain
    Base class for question-answer generation chains.
  • chains.qa_with_sources.base.BaseQAWithSourcesChain
    Question answering chain with sources over documents.
  • chains.qa_with_sources.base.QAWithSourcesChain
    Question answering with sources over documents.
  • chains.qa_with_sources.loading.LoadingCallable(…)
    Interface for loading the combine documents chain.
  • chains.qa_with_sources.retrieval.RetrievalQAWithSourcesChain
    Question-answering with sources over an index.
  • chains.qa_with_sources.vector_db.VectorDBQAWithSourcesChain
    Question-answering with sources over a vector database.
  • chains.query_constructor.base.StructuredQueryOutputParser
    Output parser that parses a structured query.
  • chains.query_constructor.parser.ISO8601Date
    A date in ISO 8601 format (YYYY-MM-DD).
  • chains.query_constructor.schema.AttributeInfo
    Information about a data source attribute.
  • chains.question_answering.chain.LoadingCallable(…)
    Interface for loading the combine documents chain.
  • chains.retrieval_qa.base.BaseRetrievalQA
    Base class for question-answering chains.
  • chains.retrieval_qa.base.RetrievalQA
    [Deprecated] Chain for question-answering against an index.
  • chains.retrieval_qa.base.VectorDBQA
    Chain for question-answering against a vector database.
  • chains.router.base.MultiRouteChain
    Use a single chain to route an input to one of multiple candidate chains.
  • chains.router.base.Route(destination, …)
    Create new instance of Route(destination, next_inputs)
  • chains.router.base.RouterChain
    Chain that outputs the name of a destination chain and the inputs to it.
  • chains.router.embedding_router.EmbeddingRouterChain
    Chain that uses embeddings to route between options.
  • chains.router.llm_router.LLMRouterChain
    A router chain that uses an LLM chain to perform routing.
  • chains.router.llm_router.RouterOutputParser
    Parser for output of router chain in the multi-prompt chain.
  • chains.router.multi_prompt.MultiPromptChain
    A multi-route chain that uses an LLM router chain to choose amongst prompts.
  • chains.router.multi_retrieval_qa.MultiRetrievalQAChain
    A multi-route chain that uses an LLM router chain to choose amongst retrieval qa chains.
  • chains.sequential.SequentialChain
    Chain where the outputs of one chain feed directly into next.
  • chains.sequential.SimpleSequentialChain
    Simple chain where the outputs of one step feed directly into next.
  • chains.sql_database.query.SQLInput
    Input for a SQL Chain.
  • chains.sql_database.query.SQLInputWithTables
    Input for a SQL Chain.
  • chains.summarize.chain.LoadingCallable(…)
    Interface for loading the combine documents chain.
  • chains.transform.TransformChain
    Chain that transforms the chain output.

Functions

  • chains.combine_documents.reduce.acollapse_docs(…)
    Execute a collapse function on a set of documents and merge their metadatas.
  • chains.combine_documents.reduce.collapse_docs(…)
    Execute a collapse function on a set of documents and merge their metadatas.
  • chains.combine_documents.reduce.split_list_of_docs(…)
    Split Documents into subsets that each meet a cumulative length constraint.
  • chains.combine_documents.stuff.create_stuff_documents_chain(…)
    Create a chain for passing a list of Documents to a model.
  • chains.example_generator.generate_example(…)
    Return another example given a list of examples for a prompt.
  • chains.history_aware_retriever.create_history_aware_retriever(…)
    Create a chain that takes conversation history and returns documents.
  • chains.loading.load_chain(path, **kwargs)
    Unified method for loading a chain from LangChainHub or local fs.
  • chains.loading.load_chain_from_config(…)
    Load chain from Config Dict.
  • chains.openai_functions.base.create_openai_fn_chain(…)
    [Deprecated] [Legacy] Create an LLM chain that uses OpenAI functions.
  • chains.openai_functions.base.create_structured_output_chain(…)
    [Deprecated] [Legacy] Create an LLMChain that uses an OpenAI function to get a structured output.
  • chains.openai_functions.citation_fuzzy_match.create_citation_fuzzy_match_chain(llm)
    Create a citation fuzzy match chain.
  • chains.openai_functions.extraction.create_extraction_chain(…)
    [Deprecated] Creates a chain that extracts information from a passage.
  • chains.openai_functions.extraction.create_extraction_chain_pydantic(…)
    [Deprecated] Creates a chain that extracts information from a passage using pydantic schema.
  • chains.openai_functions.openapi.get_openapi_chain(spec)
    Create a chain for querying an API from a OpenAPI spec.
  • chains.openai_functions.openapi.openapi_spec_to_openai_fn(spec)
    Convert a valid OpenAPI spec to the JSON Schema format expected for OpenAI
  • chains.openai_functions.qa_with_structure.create_qa_with_sources_chain(llm)
    Create a question answering chain that returns an answer with sources.
  • chains.openai_functions.qa_with_structure.create_qa_with_structure_chain(…)
    Create a question answering chain that returns an answer with sources
  • chains.openai_functions.tagging.create_tagging_chain(…)
    Create a chain that extracts information from a passage
  • chains.openai_functions.tagging.create_tagging_chain_pydantic(…)
    Create a chain that extracts information from a passage
  • chains.openai_functions.utils.get_llm_kwargs(…)
    Return the kwargs for the LLMChain constructor.
  • chains.openai_tools.extraction.create_extraction_chain_pydantic(…)
    [Deprecated] Creates a chain that extracts information from a passage.
  • chains.prompt_selector.is_chat_model(llm)
    Check if the language model is a chat model.
  • chains.prompt_selector.is_llm(llm)
    Check if the language model is a LLM.
  • chains.qa_with_sources.loading.load_qa_with_sources_chain(llm)
    Load a question answering with sources chain.
  • chains.query_constructor.base.construct_examples(…)
    Construct examples from input-output pairs.
  • chains.query_constructor.base.fix_filter_directive(…)
    Fix invalid filter directive.
  • chains.query_constructor.base.get_query_constructor_prompt(…)
    Create query construction prompt.
  • chains.query_constructor.base.load_query_constructor_chain(…)
    Load a query constructor chain.
  • chains.query_constructor.base.load_query_constructor_runnable(…)
    Load a query constructor runnable chain.
  • chains.query_constructor.parser.get_parser([…])
    Return a parser for the query language.
  • chains.query_constructor.parser.v_args(…)
    Dummy decorator for when lark is not installed.
  • chains.question_answering.chain.load_qa_chain(llm)
    Load question answering chain.
  • chains.retrieval.create_retrieval_chain(…)
    Create retrieval chain that retrieves documents and then passes them on.
  • chains.sql_database.query.create_sql_query_chain(llm, db)
    Create a chain that generates SQL queries.
  • chains.structured_output.base.create_openai_fn_runnable(…)
    [Deprecated] Create a runnable sequence that uses OpenAI functions.
  • chains.structured_output.base.create_structured_output_runnable(…)
    [Deprecated] Create a runnable for extracting structured outputs.
  • chains.structured_output.base.get_openai_output_parser(…)
    Get the appropriate function output parser given the user functions.
  • chains.summarize.chain.load_summarize_chain(llm)
    Load summarizing chain.

4、langchain.embeddings

Embedding models are wrappers around embedding models from different APIs and services.

Embedding models can be LLMs or not.

Class hierarchy:

Embeddings --> <name>Embeddings  # Examples: OpenAIEmbeddings, HuggingFaceEmbeddings

Classes

  • embeddings.cache.CacheBackedEmbeddings(…)
    Interface for caching results from embedding models.

5、langchain.evaluation

Evaluation chains for grading LLM and Chain outputs.

This module contains off-the-shelf evaluation chains for grading the output of LangChain primitives such as language models and chains.

Loading an evaluator

To load an evaluator, you can use the load_evaluators or load_evaluator functions with the names of the evaluators to load.

from langchain.evaluation import load_evaluatorevaluator = load_evaluator("qa")
evaluator.evaluate_strings(prediction="We sold more than 40,000 units last week",input="How many units did we sell last week?",reference="We sold 32,378 units",
)

The evaluator must be one of EvaluatorType.

Datasets

To load one of the LangChain HuggingFace datasets, you can use the load_dataset function with the name of the dataset to load.

from langchain.evaluation import load_dataset
ds = load_dataset("llm-math")

Some common use cases for evaluation include:

  • Grading the accuracy of a response against ground truth answers: QAEvalChain
  • Comparing the output of two models: PairwiseStringEvalChain or LabeledPairwiseStringEvalChain when there is additionally a reference label.
  • Judging the efficacy of an agent’s tool usage: TrajectoryEvalChain
  • Checking whether an output complies with a set of criteria: CriteriaEvalChain or LabeledCriteriaEvalChain when there is additionally a reference label.
  • Computing semantic difference between a prediction and reference: EmbeddingDistanceEvalChain or between two predictions: PairwiseEmbeddingDistanceEvalChain
  • Measuring the string distance between a prediction and reference StringDistanceEvalChain or between two predictions PairwiseStringDistanceEvalChain

Low-level API

These evaluators implement one of the following interfaces:

  • StringEvaluator: Evaluate a prediction string against a reference label and/or input context.
  • PairwiseStringEvaluator: Evaluate two prediction strings against each other. Useful for scoring preferences, measuring similarity between two chain or llm agents, or comparing outputs on similar inputs.
  • AgentTrajectoryEvaluator Evaluate the full sequence of actions taken by an agent.

These interfaces enable easier composability and usage within a higher level evaluation framework.


Classes

  • evaluation.agents.trajectory_eval_chain.TrajectoryEval
    A named tuple containing the score and reasoning for a trajectory.
  • evaluation.agents.trajectory_eval_chain.TrajectoryEvalChain
    A chain for evaluating ReAct style agents.
  • evaluation.agents.trajectory_eval_chain.TrajectoryOutputParser
    Trajectory output parser.
  • evaluation.comparison.eval_chain.LabeledPairwiseStringEvalChain
    A chain for comparing two outputs, such as the outputs
  • evaluation.comparison.eval_chain.PairwiseStringEvalChain
    A chain for comparing two outputs, such as the outputs
  • evaluation.comparison.eval_chain.PairwiseStringResultOutputParser
    A parser for the output of the PairwiseStringEvalChain.
  • evaluation.criteria.eval_chain.Criteria(value)
    A Criteria to evaluate.
  • evaluation.criteria.eval_chain.CriteriaEvalChain
    LLM Chain for evaluating runs against criteria.
  • evaluation.criteria.eval_chain.CriteriaResultOutputParser
    A parser for the output of the CriteriaEvalChain.
  • evaluation.criteria.eval_chain.LabeledCriteriaEvalChain
    Criteria evaluation chain that requires references.
  • evaluation.embedding_distance.base.EmbeddingDistance(value)
    Embedding Distance Metric.
  • evaluation.embedding_distance.base.EmbeddingDistanceEvalChain
    Use embedding distances to score semantic difference between a prediction and reference.
  • evaluation.embedding_distance.base.PairwiseEmbeddingDistanceEvalChain
    Use embedding distances to score semantic difference between two predictions.
  • evaluation.exact_match.base.ExactMatchStringEvaluator(*)
    Compute an exact match between the prediction and the reference.
  • evaluation.parsing.base.JsonEqualityEvaluator([…])
    Evaluate whether the prediction is equal to the reference after
  • evaluation.parsing.base.JsonValidityEvaluator(…)
    Evaluate whether the prediction is valid JSON.
  • evaluation.parsing.json_distance.JsonEditDistanceEvaluator([…])
    An evaluator that calculates the edit distance between JSON strings.
  • evaluation.parsing.json_schema.JsonSchemaEvaluator(…)
    An evaluator that validates a JSON prediction against a JSON schema reference.
  • evaluation.qa.eval_chain.ContextQAEvalChain
    LLM Chain for evaluating QA w/o GT based on context
  • evaluation.qa.eval_chain.CotQAEvalChain
    LLM Chain for evaluating QA using chain of thought reasoning.
  • evaluation.qa.eval_chain.QAEvalChain
    LLM Chain for evaluating question answering.
  • evaluation.qa.generate_chain.QAGenerateChain
    LLM Chain for generating examples for question answering.
  • evaluation.regex_match.base.RegexMatchStringEvaluator(*)
    Compute a regex match between the prediction and the reference.
  • evaluation.schema.AgentTrajectoryEvaluator()
    Interface for evaluating agent trajectories.
  • evaluation.schema.EvaluatorType(value)
    The types of the evaluators.
  • evaluation.schema.LLMEvalChain
    A base class for evaluators that use an LLM.
  • evaluation.schema.PairwiseStringEvaluator()
    Compare the output of two models (or two outputs of the same model).
  • evaluation.schema.StringEvaluator()
    Grade, tag, or otherwise evaluate predictions relative to their inputs and/or reference labels.
  • evaluation.scoring.eval_chain.LabeledScoreStringEvalChain
    A chain for scoring the output of a model on a scale of 1-10.
  • evaluation.scoring.eval_chain.ScoreStringEvalChain
    A chain for scoring on a scale of 1-10 the output of a model.
  • evaluation.scoring.eval_chain.ScoreStringResultOutputParser
    A parser for the output of the ScoreStringEvalChain.
  • evaluation.string_distance.base.PairwiseStringDistanceEvalChain
    Compute string edit distances between two predictions.
  • evaluation.string_distance.base.StringDistance(value)
    Distance metric to use.
  • evaluation.string_distance.base.StringDistanceEvalChain
    Compute string distances between the prediction and the reference.

Functions

  • evaluation.comparison.eval_chain.resolve_pairwise_criteria(…)
    Resolve the criteria for the pairwise evaluator.
  • evaluation.criteria.eval_chain.resolve_criteria(…)
    Resolve the criteria to evaluate.
  • evaluation.loading.load_dataset(uri)
    Load a dataset from the LangChainDatasets on HuggingFace.
  • evaluation.loading.load_evaluator(evaluator, *)
    Load the requested evaluation chain specified by a string.
  • evaluation.loading.load_evaluators(evaluators, *)
    Load evaluators specified by a list of evaluator types.
  • evaluation.scoring.eval_chain.resolve_criteria(…)
    Resolve the criteria for the pairwise evaluator.

6、langchain.hub

Interface with the LangChain Hub.


Functions

  • hub.pull(owner_repo_commit, *[, api_url, …])
    Pull an object from the hub and returns it as a LangChain object.
  • hub.push(repo_full_name, object, *[, …])
    Push an object to the hub and returns the URL it can be viewed at in a browser.

7、langchain.indexes

Index is used to avoid writing duplicated content into the vectostore and to avoid over-writing content if it’s unchanged.

Indexes also :

  • Create knowledge graphs from data.
  • Support indexing workflows from LangChain data loaders to vectorstores.

Importantly, Index keeps on working even if the content being written is derived via a set of transformations from some source content (e.g., indexing children documents that were derived from parent documents by chunking.)


Classes

  • indexes.vectorstore.VectorStoreIndexWrapper
    Wrapper around a vectorstore for easy access.
  • indexes.vectorstore.VectorstoreIndexCreator
    Logic for creating indexes.

8、langchain.memory

Memory maintains Chain state, incorporating context from past runs.

Class hierarchy for Memory:

BaseMemory --> BaseChatMemory --> <name>Memory  # Examples: ZepMemory, MotorheadMemory

Main helpers:

BaseChatMessageHistory

Chat Message History stores the chat message history in different stores.

Class hierarchy for ChatMessageHistory:

BaseChatMessageHistory --> <name>ChatMessageHistory  # Example: ZepChatMessageHistory

Main helpers:

AIMessage, BaseMessage, HumanMessage

Classes

  • memory.buffer.ConversationBufferMemory
    Buffer for storing conversation memory.
  • memory.buffer.ConversationStringBufferMemory
    Buffer for storing conversation memory.
  • memory.buffer_window.ConversationBufferWindowMemory
    Buffer for storing conversation memory inside a limited size window.
  • memory.chat_memory.BaseChatMemory
    Abstract base class for chat memory.
  • memory.combined.CombinedMemory
    Combining multiple memories’ data together.
  • memory.entity.BaseEntityStore
    Abstract base class for Entity store.
  • memory.entity.ConversationEntityMemory
    Entity extractor & summarizer memory.
  • memory.entity.InMemoryEntityStore
    In-memory Entity store.
  • memory.entity.RedisEntityStore
    Redis-backed Entity store.
  • memory.entity.SQLiteEntityStore
    SQLite-backed Entity store
  • memory.entity.UpstashRedisEntityStore
    Upstash Redis backed Entity store.
  • memory.readonly.ReadOnlySharedMemory
    Memory wrapper that is read-only and cannot be changed.
  • memory.simple.SimpleMemory
    Simple memory for storing context or other information that shouldn’t ever change between prompts.
  • memory.summary.ConversationSummaryMemory
    Conversation summarizer to chat memory.
  • memory.summary.SummarizerMixin
    Mixin for summarizer.
  • memory.summary_buffer.ConversationSummaryBufferMemory
    Buffer with summarizer for storing conversation memory.
  • memory.token_buffer.ConversationTokenBufferMemory
    Conversation chat memory with token limit.
  • memory.vectorstore.VectorStoreRetrieverMemory
    VectorStoreRetriever-backed memory.

Functions

  • memory.utils.get_prompt_input_key(inputs, …)
    Get the prompt input key.

9、langchain.model_laboratory

Experiment with different models.


Classes

  • model_laboratory.ModelLaboratory(chains[, names])
    Experiment with different models.

10、langchain.output_parsers

OutputParser classes parse the output of an LLM call.

Class hierarchy:

BaseLLMOutputParser --> BaseOutputParser --> <name>OutputParser  # ListOutputParser, PydanticOutputParser

Main helpers:

Serializable, Generation, PromptValue

Classes

  • output_parsers.boolean.BooleanOutputParser
    Parse the output of an LLM call to a boolean.
  • output_parsers.combining.CombiningOutputParser
    Combine multiple output parsers into one.
  • output_parsers.datetime.DatetimeOutputParser
    Parse the output of an LLM call to a datetime.
  • output_parsers.enum.EnumOutputParser
    Parse an output that is one of a set of values.
  • output_parsers.fix.OutputFixingParser
    Wrap a parser and try to fix parsing errors.
  • output_parsers.pandas_dataframe.PandasDataFrameOutputParser
    Parse an output using Pandas DataFrame format.
  • output_parsers.regex.RegexParser
    Parse the output of an LLM call using a regex.
  • output_parsers.regex_dict.RegexDictParser
    Parse the output of an LLM call into a Dictionary using a regex.
  • output_parsers.retry.RetryOutputParser
    Wrap a parser and try to fix parsing errors.
  • output_parsers.retry.RetryWithErrorOutputParser
    Wrap a parser and try to fix parsing errors.
  • output_parsers.structured.ResponseSchema
    Schema for a response from a structured output parser.
  • output_parsers.structured.StructuredOutputParser
    Parse the output of an LLM call to a structured output.
  • output_parsers.yaml.YamlOutputParser
    Parse YAML output using a pydantic model.

Functions

  • output_parsers.loading.load_output_parser(config)
    Load an output parser.

11、langchain.retrievers

Retriever class returns Documents given a text query.

It is more general than a vector store. A retriever does not need to be able to store documents, only to return (or retrieve) it. Vector stores can be used as the backbone of a retriever, but there are other types of retrievers as well.

Class hierarchy:

BaseRetriever --> <name>Retriever  # Examples: ArxivRetriever, MergerRetriever

Main helpers:

Document, Serializable, Callbacks,
CallbackManagerForRetrieverRun, AsyncCallbackManagerForRetrieverRun

Classes

  • retrievers.contextual_compression.ContextualCompressionRetriever
    Retriever that wraps a base retriever and compresses the results.
  • retrievers.document_compressors.base.DocumentCompressorPipeline
    Document compressor that uses a pipeline of Transformers.
  • retrievers.document_compressors.chain_extract.LLMChainExtractor
    Document compressor that uses an LLM chain to extract the relevant parts of documents.
  • retrievers.document_compressors.chain_extract.NoOutputParser
    Parse outputs that could return a null string of some sort.
  • retrievers.document_compressors.chain_filter.LLMChainFilter
    Filter that drops documents that aren’t relevant to the query.
  • retrievers.document_compressors.cohere_rerank.CohereRerank
    [Deprecated] Document compressor that uses Cohere Rerank API.
  • retrievers.document_compressors.cross_encoder.BaseCrossEncoder()
    Interface for cross encoder models.
  • retrievers.document_compressors.cross_encoder_rerank.CrossEncoderReranker
    Document compressor that uses CrossEncoder for reranking.
  • retrievers.document_compressors.embeddings_filter.EmbeddingsFilter
    Document compressor that uses embeddings to drop documents unrelated to the query.
  • retrievers.ensemble.EnsembleRetriever
    Retriever that ensembles the multiple retrievers.
  • retrievers.merger_retriever.MergerRetriever
    Retriever that merges the results of multiple retrievers.
  • retrievers.multi_query.LineListOutputParser
    Output parser for a list of lines.
  • retrievers.multi_query.MultiQueryRetriever
    Given a query, use an LLM to write a set of queries.
  • retrievers.multi_vector.MultiVectorRetriever
    Retrieve from a set of multiple embeddings for the same document.
  • retrievers.multi_vector.SearchType(value)
    Enumerator of the types of search to perform.
  • retrievers.parent_document_retriever.ParentDocumentRetriever
    Retrieve small chunks then retrieve their parent documents.
  • retrievers.re_phraser.RePhraseQueryRetriever
    Given a query, use an LLM to re-phrase it.
  • retrievers.self_query.base.SelfQueryRetriever
    Retriever that uses a vector store and an LLM to generate the vector store queries.
  • retrievers.time_weighted_retriever.TimeWeightedVectorStoreRetriever
    Retriever that combines embedding similarity with recency in retrieving values. |

Functions

  • retrievers.document_compressors.chain_extract.default_get_input(…)
    Return the compression chain input.
  • retrievers.document_compressors.chain_filter.default_get_input(…)
    Return the compression chain input.
  • retrievers.ensemble.unique_by_key(iterable, key)
    Yield unique elements of an iterable based on a key function.

12、langchain.runnables

LangChain Runnable and the LangChain Expression Language (LCEL).

The LangChain Expression Language (LCEL) offers a declarative method to build production-grade programs that harness the power of LLMs.

Programs created using LCEL and LangChain Runnables inherently support synchronous, asynchronous, batch, and streaming operations.

Support for async allows servers hosting the LCEL based programs to scale better for higher concurrent loads.

Batch operations allow for processing multiple inputs in parallel.

Streaming of intermediate outputs, as they’re being generated, allows for creating more responsive UX.

This module contains non-core Runnable classes.


Classes

  • runnables.hub.HubRunnable
    An instance of a runnable stored in the LangChain Hub.
  • runnables.openai_functions.OpenAIFunction
    A function description for ChatOpenAI
  • runnables.openai_functions.OpenAIFunctionsRouter
    A runnable that routes to the selected function.

13、langchain.smith

LangSmith utilities.

This module provides utilities for connecting to LangSmith. For more information on LangSmith, see the LangSmith documentation.

Evaluation

LangSmith helps you evaluate Chains and other language model application components using a number of LangChain evaluators. An example of this is shown below, assuming you’ve created a LangSmith dataset called <my_dataset_name>:

from langsmith import Client
from langchain_community.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.smith import RunEvalConfig, run_on_dataset# Chains may have memory. Passing in a constructor function lets the
# evaluation framework avoid cross-contamination between runs.
def construct_chain():llm = ChatOpenAI(temperature=0)chain = LLMChain.from_string(llm,"What's the answer to {your_input_key}")return chain# Load off-the-shelf evaluators via config or the EvaluatorType (string or enum)
evaluation_config = RunEvalConfig(evaluators=["qa",  # "Correctness" against a reference answer"embedding_distance",RunEvalConfig.Criteria("helpfulness"),RunEvalConfig.Criteria({"fifth-grader-score": "Do you have to be smarter than a fifth grader to answer this question?"}),]
)client = Client()
run_on_dataset(client,"<my_dataset_name>",construct_chain,evaluation=evaluation_config,
)

You can also create custom evaluators by subclassing the StringEvaluator or LangSmith’s RunEvaluator classes.

from typing import Optional
from langchain.evaluation import StringEvaluatorclass MyStringEvaluator(StringEvaluator):@propertydef requires_input(self) -> bool:return False@propertydef requires_reference(self) -> bool:return True@propertydef evaluation_name(self) -> str:return "exact_match"def _evaluate_strings(self, prediction, reference=None, input=None, **kwargs) -> dict:return {"score": prediction == reference}evaluation_config = RunEvalConfig(custom_evaluators = [MyStringEvaluator()],
)run_on_dataset(client,"<my_dataset_name>",construct_chain,evaluation=evaluation_config,
)

Primary Functions

  • arun_on_dataset: Asynchronous function to evaluate a chain, agent, or other LangChain component over a dataset.
  • run_on_dataset: Function to evaluate a chain, agent, or other LangChain component over a dataset.
  • RunEvalConfig: Class representing the configuration for running evaluation. You can select evaluators by EvaluatorType or config, or you can pass in custom_evaluators

Classes

  • smith.evaluation.config.EvalConfig
    Configuration for a given run evaluator.
  • smith.evaluation.config.RunEvalConfig
    Configuration for a run evaluation.
  • smith.evaluation.config.SingleKeyEvalConfig
    Configuration for a run evaluator that only requires a single key.
  • smith.evaluation.progress.ProgressBarCallback(total)
    A simple progress bar for the console.
  • smith.evaluation.runner_utils.ChatModelInput
    Input for a chat model.
  • smith.evaluation.runner_utils.EvalError(…)
    Your architecture raised an error.
  • smith.evaluation.runner_utils.InputFormatError
    Raised when the input format is invalid.
  • smith.evaluation.runner_utils.TestResult
    A dictionary of the results of a single test run.
  • smith.evaluation.string_run_evaluator.ChainStringRunMapper
    Extract items to evaluate from the run object from a chain.
  • smith.evaluation.string_run_evaluator.LLMStringRunMapper
    Extract items to evaluate from the run object.
  • smith.evaluation.string_run_evaluator.StringExampleMapper
    Map an example, or row in the dataset, to the inputs of an evaluation.
  • smith.evaluation.string_run_evaluator.StringRunEvaluatorChain
    Evaluate Run and optional examples.
  • smith.evaluation.string_run_evaluator.StringRunMapper
    Extract items to evaluate from the run object.
  • smith.evaluation.string_run_evaluator.ToolStringRunMapper
    Map an input to the tool.

Functions

  • smith.evaluation.name_generation.random_name()
    Generate a random name.
  • smith.evaluation.runner_utils.arun_on_dataset(…)
    Run the Chain or language model on a dataset and store traces to the specified project name.
  • smith.evaluation.runner_utils.run_on_dataset(…)
    Run the Chain or language model on a dataset and store traces to the specified project name.

14、langchain.storage

Implementations of key-value stores and storage helpers.

Module provides implementations of various key-value stores that conform to a simple key-value interface.

The primary goal of these storages is to support implementation of caching.


Classes

  • storage.encoder_backed.EncoderBackedStore(…)
    Wraps a store with key and value encoders/decoders.
  • storage.file_system.LocalFileStore(root_path, *)
    BaseStore interface that works on the local file system.

2024-05-22(三)

Sam 的苏丹王榴莲千层真的好吃

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/14510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树顺序结构及链式结构

一.二叉树的顺序结构 1.定义&#xff1a;使用数组存储数据&#xff0c;一般使用数组只适合表示完全二叉树&#xff0c;此时不会有空间的浪费 注&#xff1a;二叉树的顺序存储在逻辑上是一颗二叉树&#xff0c;但是在物理上是一个数组&#xff0c;此时需要程序员自己想清楚调整…

http流式返回

HTTP流式返回&#xff08;Stream&#xff09;是一种服务器向客户端传输数据的方式允许数据分块发送而不是一次性发送完毕。 这样客户端可以在接收到第一部分数据时就开始处理&#xff0c;而不必等待整个响应完成。 应用场景&#xff1a; 2.1 业务场景&#xff1a;图表的监听&a…

手动安装maven依赖到本地仓库

使用mvn install命令安装jar包到指定的仓库。 命令如下&#xff1a; mvn install:install-file -Dmaven.repo.localC:\Users\liyong.m2\repository -DgroupIdcom.aspose -DartifactIdwords -Dversion18.4 -Dpackagingjar -DfileC:\Users\liyong\Desktop\jar\words-18.4.jar 解释…

grafana + Prometheus + node-exporter + pushgateway + alertmanager的监控解决方案

业内比较著名的监控解决方案&#xff0c;据笔者所知&#xff0c;大概是三套&#xff1a; 一个是zabbix的解决方案&#xff0c;一个是prometheusgrafana&#xff0c;一个是ELK zabbix比较重&#xff0c;而且原生支持监控SNMP&#xff0c;自带一个仪表盘&#xff0c;不需要额外…

docker redis 持久化

1、拉取redis镜像 docker pull redis:latest 2、 mkdir /data/redis 3、填充redis.conf文件及根据需求修改相应的配置 •通过官网地址找到对应版本的配置文件 •将配置信息复制到redis.conf中 •常见的修改配置 https://redis.io/docs/latest/operate/oss_and_stack/managem…

高仿果汁导航模板

参考原文&#xff1a;果汁导航风格模板_1234FCOM专注游戏工具及源码例子分享 极速云

sdut pta 链表3(优化)-----7-3 sdut-C语言实验-链表的结点插入

7-3 sdut-C语言实验-链表的结点插入 分数 20 全屏浏览 切换布局 作者 马新娟 单位 山东理工大学 给出一个只有头指针的链表和 n 次操作&#xff0c;每次操作为在链表的第 m 个元素后面插入一个新元素x。若m 大于链表的元素总数则将x放在链表的最后。 输入格式: 多组输入。…

基于springboot的毕业设计系统的开发源码

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的毕业设计系统的开发。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 毕业设计系统能够实现…

学习通高分免费刷课实操教程

文章目录 概要整体架构流程详细步骤云上全平台登录步骤小结 概要 我之前提到过一个通过浏览器的三个脚本就可以免费高分刷课的文章&#xff0c;由于不方便拍视频进行实操演示&#xff0c;然后写下了这个实操教程&#xff0c;之前的三个脚本划到文章末尾 整体架构流程 整体大…

窗口函数 | rows between …… and ……

ROWS BETWEEN ... AND ... 是 SQL 窗口函数中的一个子句&#xff0c;用于定义窗口函数操作的行范围。窗口函数允许用户对一组相关的记录执行计算&#xff0c;这些记录被称为窗口。 基本语法 <窗口函数> OVER ( [PARTITION BY <列名>] ORDER BY <列名> [AS…

前端基础入门三大核心之HTML篇 —— SVG的viewBox、width和height:绘制矢量图的魔法比例尺【含代码示例】

前端基础入门三大核心之HTML篇 —— SVG的viewBox、width和height&#xff1a;绘制矢量图的魔法比例尺【含代码示例】 基本概念与作用viewBoxwidth和height 代码示例与实践基础示例动态调整示例 不同角度的使用思路保持比例缩放自动适应容器 实际问题与解决方案结语与讨论 在前…

华为云之Zabbix监控平台部署实践

华为云之Zabbix监控平台部署实践 一、本次实践介绍1.1 实践环境简介1.3 本次实践完成目标 二、 相关服务介绍2.1 华为云ECS云服务器介绍2.2 Zabbix介绍 三、环境准备工作3.1 预置实验环境3.2 查看预置环境信息 四、登录华为云4.1 登录华为云4.2 查看ECS状态4.3 连接ECS弹性云服…

力扣HOT100 - 287. 寻找重复数

解题思路&#xff1a; 快慢指针 第一步&#xff0c;慢指针每次移动一步&#xff0c;快指针每次移动两步&#xff0c;直到它们相遇。这一步保证了它们在环中相遇。 接下来&#xff0c;将其中一个指针&#xff08;快指针或慢指针&#xff09;重置到起点&#xff08;即数组的第一…

SpringBoot实现邮箱验证码

自行创建一个SpringBoot项目 导入SpringBoot所需要的邮箱验证码的包 <!--邮件发送--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId><version>2.6.1</version>…

前后端部署笔记

windows版&#xff1a; 如果傻呗公司让用win电脑部署&#xff0c;类似于我们使用笔记本做局域网服务器&#xff0c;社内使用。 1.安装win版的nginx、mysql、node、jdk等 2.nginx开机自启参考Nginx配置及开机自启动&#xff08;Windows环境&#xff09;_nginx开机自启动 wind…

UPPAAL使用方法

UPPAAL使用方法 由于刚开始学习时间自动机及其使用方法&#xff0c;对UPPAAL使用不太熟悉&#xff0c;网上能找到的教程很少&#xff0c;摸索了很久终于成功实现一个小例子&#xff0c;所以记录一下详细教程。 这里用到的例子参考【UPPAAL学习笔记】1&#xff1a;基本使用示例…

专业级润滑油,一站式批发服务

要为机械设备提供持久稳定的动力保障吗&#xff1f;选择我们的专业级润滑油&#xff0c;让您的设备运转更顺畅&#xff0c;效率更高。 我们专业从事润滑油批发多年&#xff0c;以优质的产品、合理的价格和完善的服务赢得了广大客户的信赖。无论是汽车、机械还是工业设备&#x…

【Vue3】env环境变量的配置和使用(区分cli和vite)

原文作者&#xff1a;我辈李想 版权声明&#xff1a;文章原创&#xff0c;转载时请务必加上原文超链接、作者信息和本声明。 文章目录 前言一、env文件二、vue3cli加载env1..env配置2..dev配置&#xff08;其他环境参考&#xff09;3.package.json文件4.使用 三、vue3vite加载e…

【html5】03-新表单元素及属性

目录 1 引言 2 智能表单控件-type 3 表单属性 form input 5 答疑--解决required自定义提示信息 1 引言 HTML5引入了一系列新的表单输入类型&#xff0c;如email、url、number、range、date、time、datetime-local、month、week、search、color和tel等。这些新类型增强了表…

FFmpeg源码:bytestream_get_byte函数解析

一、引言 FFmpeg源码中经常使用到bytestream_get_byte这个函数&#xff0c;比如使用FFmpeg对BMP图片进行解析&#xff0c;其源码会调用函数bmp_decode_frame&#xff0c;而该函数内部会通过bytestream_get_byte读取BMP 的header。本文讲解函数bytestream_get_byte的作用和内部…