1. 背景
五一结束后,本qiang~又投入了LLM的技术海洋中,本期将给大家带来LLM微调神器:Unsloth。
正如Unsloth官方的对外宣贯:Easily finetune & train LLMs; Get faster with unsloth。微调训练LLM,可以显著提升速度,其次显存占用也会显著减少。
但有一点需要说明:unsloth目前开源部分只支持单机版微调,更高效微调只能交费使用unsloth pro。
2. Unsloth简介
2.1 主要特性
(1) 所有的内核均以OpenAI的Triton语言实现,并且手动实现反向传播引擎。Triton语言是面向LLM训练加速。
(2) 准确率0损失,没有近似方法,方法完全一致。
(3) 硬件层面无需变动。支持18年之后的Nvidia GPU(V100, T4, Titan V, RTX20,30,40x, A100, H100, L40等,GTX1070,1080也支撑,但比较慢),Cuda最低兼容版本是7.0
(4) 通过WSL适用于Linux和Windows
(5) 基于bisandbytes包,支持4bit和16bit的 QLoRA/LoRA微调
(6) 开源代码有5倍的训练效率提升, Unsloth Pro可以提升至30倍
2.2 目前支撑的模型
由于底层算子需要使用triton重写,因此部分开源模型的适配工作周期可能较长。当前unsloth支持的模型包含Qwen 1.5(7B, 14B, 32B, 72B), Llama3-8B, Mistral-7B, Gemma-7B, ORPO, DPO Zephyr, Phi-3(3.8B), TinyLlama
2.3 模型加速效果
Qwen1.5-7B的集成是由Firefly作者封装并验证,性能提升30%+,显卡减少40%+,详见地址。
2.4 安装教程
conda create --name unsloth_env python=3.10conda activate unsloth_envconda install pytorch-cuda=<12.1/11.8> pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformerspip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"pip install --no-deps trl peft accelerate bitsandbytes
3. 实战
本着眼过千遍不如手过一遍的宗旨,本qiang~针对Unsloth做了一个对比实现。对比的实验环境分别为:P40, A40, A800,对比的模型使用的是出锅热乎的Llama3(8B)。
3.1 比对维度
维度 | 说明 |
显卡 | 是否支持bf16 |
最大文本长度 | max_seq_length |
批次大小 | per_device_train_batch_size |
梯度累加步长 | gradient_accumulation_steps |
秩 | LoRA的rank |
dropout | lora_droput |
3.2 源码
from unsloth import FastLanguageModel
import torch
from datasets import load_dataset
from trl import SFTTrainer
from transformers import TrainingArguments, TextStreamer, AutoModelForCausalLM, set_seed, AutoTokenizer, BitsAndBytesConfig
from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training
import gcset_seed(42)alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.### Instruction:{}### Input:{}### Response:{}"""def train_unsloth(dtype,max_seq_length,per_device_train_batch_size, gradient_accumulation_steps, rank, lora_alpha=16, lora_dropout=0, max_steps=50, save_steps=50,seed=42,warmup_steps=5,learning_rate=2e-4,logging_steps=5):"""使用unsloth进行微调训练"""print(f'dtype:{dtype}, max_seq_length:{max_seq_length}, per_device_train_batch_size:{per_device_train_batch_size}, gradient_accumulation_steps:{gradient_accumulation_steps}, rank:{rank}, lora_dropout:{lora_dropout}')load_in_4bit = Truemodel, tokenizer = FastLanguageModel.from_pretrained(model_name='pretrain_models/llama/llama3-8B-Instruct',max_seq_length=max_seq_length,dtype=dtype,load_in_4bit=load_in_4bit)model = FastLanguageModel.get_peft_model(model,r = rank,target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],lora_alpha=lora_alpha,lora_dropout=lora_dropout,bias='none',use_gradient_checkpointing=True,random_state=seed,use_rslora=False)EOS_TOKEN = tokenizer.eos_tokendef formatting_prompts_func(examples):instructions = examples["instruction"]inputs = examples["input"]outputs = examples["output"]texts = []for instruction, input, output in zip(instructions, inputs, outputs):# Must add EOS_TOKEN, otherwise your generation will go on forever!text = alpaca_prompt.format(instruction, input, output) + EOS_TOKENtexts.append(text)return { "text" : texts}passdataset = load_dataset("yahma/alpaca-cleaned", split = "train")dataset = dataset.map(formatting_prompts_func, batched = True)trainer = SFTTrainer(model=model,tokenizer=tokenizer,train_dataset=dataset,dataset_text_field='text',max_seq_length=max_seq_length,packing=False,args = TrainingArguments(per_device_train_batch_size=per_device_train_batch_size,gradient_accumulation_steps=gradient_accumulation_steps,warmup_steps=warmup_steps,learning_rate=learning_rate,fp16 = not torch.cuda.is_bf16_supported(),bf16 = torch.cuda.is_bf16_supported(),logging_steps=logging_steps,optim='adamw_8bit',weight_decay=0.01,lr_scheduler_type='linear',seed=seed,output_dir='output/llame3-8b-instruct-unsloth',save_steps=save_steps,max_steps=max_steps))gpu_stats = torch.cuda.get_device_properties(0)start_gpu_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)max_memory = round(gpu_stats.total_memory/1024/1024/1024, 3)print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")print(f"{start_gpu_memory} GB of memory reserved.")trainer_stats = trainer.train()used_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)used_memory_for_lora = round(used_memory - start_gpu_memory)used_percentage = round(used_memory/max_memory*100, 3)lora_percentage = round(used_memory_for_lora/max_memory*100, 3)print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")print(f"Peak reserved memory = {used_memory} GB.")print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")print(f"Peak reserved memory % of max memory = {used_percentage} %.")print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")model.save_pretrained("output/llame3-8b-instruct-unsloth-lora") # Local savingtokenizer.save_pretrained("output/llame3-8b-instruct-unsloth-lora")# model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",) # Merge to 16bit# model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",) # Merge to 4bit# model.save_pretrained_merged("model", tokenizer, save_method = "lora",) # Just LoRA adapters# model.save_pretrained_gguf("model", tokenizer,) # Save to 8bit Q8_0# model.save_pretrained_gguf("model", tokenizer, quantization_method = "f16") # Save to 16bit GGUF# model.save_pretrained_gguf("model", tokenizer, quantization_method = "q4_k_m") # Save to q4_k_m GGUFdel modeldel tokenizertorch.cuda.empty_cache()for _ in range(3):gc.collect()def train_trans(dtype, max_seq_length, per_device_train_batch_size, gradient_accumulation_steps, rank, lora_alpha=16, lora_dropout=0, max_steps=50, save_steps=50,seed=42,warmup_steps=5,learning_rate=2e-4,logging_steps=5):"""使用transformers进行微调训练"""print(f'dtype:{dtype}, max_seq_length:{max_seq_length}, per_device_train_batch_size:{per_device_train_batch_size}, gradient_accumulation_steps:{gradient_accumulation_steps}, rank:{rank}, lora_dropout:{lora_dropout}')model_path = 'pretrain_models/llama/llama3-8B-Instruct'tokenizer = AutoTokenizer.from_pretrained(model_path, padding_side='right', model_max_length=8192)tokenizer.add_special_tokens({"pad_token" : '<|reserved_special_token_250|>'})tokenizer.pad_token = '<|reserved_special_token_250|>'quantization_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_compute_dtype=dtype,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type="nf4",llm_int8_threshold=6.0,llm_int8_has_fp16_weight=False,)model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=dtype,quantization_config=quantization_config)model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)model.enable_input_require_grads()config = LoraConfig(r=rank,lora_alpha=lora_alpha,target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'],lora_dropout=lora_dropout,bias="none",task_type="CAUSAL_LM",use_rslora=False)model = get_peft_model(model, peft_config=config)model.gradient_checkpointing_enable()EOS_TOKEN = tokenizer.eos_tokendef formatting_prompts_func(examples):instructions = examples["instruction"]inputs = examples["input"]outputs = examples["output"]texts = []for instruction, input, output in zip(instructions, inputs, outputs):# Must add EOS_TOKEN, otherwise your generation will go on forever!text = alpaca_prompt.format(instruction, input, output) + EOS_TOKENtexts.append(text)return { "text" : texts}passdataset = load_dataset("yahma/alpaca-cleaned", split = "train")dataset = dataset.map(formatting_prompts_func, batched = True,)trainer = SFTTrainer(model=model,tokenizer=tokenizer,train_dataset=dataset,dataset_text_field='text',max_seq_length=max_seq_length,packing=False,args = TrainingArguments(per_device_train_batch_size=per_device_train_batch_size,gradient_accumulation_steps=gradient_accumulation_steps,warmup_steps=warmup_steps,learning_rate=learning_rate,fp16 = not torch.cuda.is_bf16_supported(),bf16 = torch.cuda.is_bf16_supported(),logging_steps=logging_steps,optim='adamw_8bit',weight_decay=0.01,lr_scheduler_type='linear',seed=seed,output_dir='output/llame3-8b-instruct-unsloth',save_steps=save_steps,max_steps=max_steps))gpu_stats = torch.cuda.get_device_properties(0)start_gpu_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)max_memory = round(gpu_stats.total_memory/1024/1024/1024, 3)print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")print(f"{start_gpu_memory} GB of memory reserved.")trainer_stats = trainer.train()used_memory = round(torch.cuda.max_memory_reserved()/1024/1024/1024, 3)used_memory_for_lora = round(used_memory - start_gpu_memory)used_percentage = round(used_memory/max_memory*100, 3)lora_percentage = round(used_memory_for_lora/max_memory*100, 3)print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")print(f"Peak reserved memory = {used_memory} GB.")print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")print(f"Peak reserved memory % of max memory = {used_percentage} %.")print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")model.save_pretrained("output/llame3-8b-instruct-unsloth-lora") # Local savingtokenizer.save_pretrained("output/llame3-8b-instruct-unsloth-lora")del modeldel tokenizertorch.cuda.empty_cache()for _ in range(3):gc.collect()def infer():model, tokenizer = FastLanguageModel.from_pretrained(model_name='output/llame3-8b-instruct-unsloth-lora',max_seq_length=2048,dtype=torch.float16,load_in_4bit=True)# 2x的速率进行推理FastLanguageModel.for_inference(model)inputs = tokenizer([alpaca_prompt.format('Continue the fibonnaci sequence.', '1, 1, 2, 3, 5, 8', '')], return_tensors = "pt").to('cuda')outputs = model.generate(**inputs, max_new_tokens=1024, use_cache=True)print(tokenizer.batch_decode(outputs))text_streamer = TextStreamer(tokenizer)outputs = model.generate(**inputs, max_new_tokens=1024, streamer=text_streamer)print(tokenizer.batch_decode(outputs))if __name__ == '__main__':train_unsloth(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=8, lora_dropout=0)train_unsloth(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0)train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)train_unsloth(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=16, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)train_trans(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=8, lora_dropout=0)train_trans(dtype=torch.bfloat16, max_seq_length=1024, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=1, gradient_accumulation_steps=16, rank=64, lora_dropout=0)train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0)train_trans(dtype=torch.bfloat16, max_seq_length=2048, per_device_train_batch_size=4, gradient_accumulation_steps=4, rank=64, lora_dropout=0.05)
4 实验结果
4.1 P40
4.2 A40
4.3 A800
4.4 结论
针对于llama3-8B进行unsloth训练,与基于transformers框架训练进行比对,结论如下:
(1) 集成unsloth后,显卡占用确实更少,训练效率确实更快,不管是哪种维度。
(2) P40增加batch_size后,显卡的内存占用提升,但训练的时间也更长,说明P40针对大批次的数据处理,性能会降低; 但A40, A800增加batch_size后,显卡内存占用虽然提升,但训练的时间更短。
(3) A800的batch_size为1时,训练效率不如A40,当batch_size增加到16时,A800的训练效率比A40快接近一倍。因此,A800更适合处理大批次的场景,对于小batch_size,杀鸡不能用牛刀。
5. 总结
一句话足矣~
本文主要是使用unsloth框架针对llama3的高效微调实验,提供了详细的对比代码以及对比分析结果。
之后会写一篇关于Qwen1.5的对比实验,敬请期待~
6. 参考
1. unsloth: https://github.com/unslothai/unsloth
2. Qwen1.5+Unsloth: Support Qwen2 by yangjianxin1 · Pull Request #428 · unslothai/unsloth · GitHub