一、论文介绍
摘要:大规模且多年的建筑屋顶面积(BRA)地图对于解决政策决策和可持续发展至关重要。此外,作为人类活动的细粒度指标,BRA可以为城市规划和能源模型提供帮助,为人类福祉带来好处。然而,由于单个建筑的尺寸较小,制作大规模BRA仍然具有挑战性。从分类方法的角度看,传统方法利用高分辨率航空图像(米级或亚米级分辨率)来绘制BRA;不幸的是,高分辨率图像的获取不仅成本高昂,而且拍摄频率低,使得BRA映射在一致的时空尺度上既昂贵又不充分。从学习策略的角度看,有一个非平凡的差距持续存在于有限的训练参考和地理空间变化的应用之间。尽管存在困难,现有的大规模BRA数据集,如微软或谷歌的,尚未包括中国,因此中国尚未有全覆盖的BRA地图。在本文中,我们首先提出了一种名为时空感知超分辨率分割框架(STSR-Seg)的深度学习方法,以从相对较低分辨率的影像中实现强大的超分辨率BRA提取,覆盖广泛的地理空间。然后,我们从2016年至2021年的哨兵2号图像生成了具有2.5米分辨率的中国建筑屋顶面积(CBRA)多年数据集。CBRA是中国首个全覆盖和多年的BRA数据集。通过设计的训练样本生成算法和时空感知学习策略,CBRA在城市区域的25万测试样本上取得了62.55%的F1得分(与中国之前的BRA数据相比提高了10.61%),在农村区域的3万测试样本上取得了78.94%的召回率。时间分析显示,多年的性能一致性良好,与其他多年不透水表面数据集吻合良好。STSR-Seg将实现低成本、动态和大规模的BRA映射。CBRA将促进BRA映射的发展,因此为可持续研究提供基础数据。
引言:近年来,建筑屋顶面积已成为人类活动、可持续城市化、建筑能源模型、城市规划和自然灾害快速响应的重要指标。因此,这类数据集在政府的一系列政策决策中变得至关重要,例如协调经济发展与人口增长之间的关系以及如何以及在何处实施公共服务。然而,许多地区可能缺乏系统评估这种发展的信息,无论是在大地理区域还是长时间周期。与此同时,卫星遥感已成为我们地球城市地图的主要手段,尤其是在发展地区,那里的调查数据或人工标记数据相当难以获得。与传统的基于调查的方法相比,遥感可以以潜在的低成本观察大面积,从而允许追踪发展地区的建
筑动态。与其他包含从卫星图像获得的建筑信息的数据集不同,如不透水面积(ISA)或人类定居足迹(HSF),建筑屋顶面积(BRA)需要更高的空间分辨率才能进行良好的识别,因为感兴趣的对象(例如住宅)尺寸较小。通常,ISA和HSF是从具有分米级分辨率的图像中获得的,而BRA则使用米级分辨率的高分辨率航空图像。然而,高分辨率航空图像的成本很高,且可能无法公开获取。例如,WorldView-2的价格为每平方公里23美元。高数据支出使得大规模BRA只对大公司如Google和Microsoft是可能的,这些公司分别使用Google Maps和Bing Maps实现了非洲的大陆规模BRA和全球BRA。为了克服成本障碍,国际努力利用开放访问的Google Earth卫星(GES)图像。最近,Z. Zhang等人利用GES图像,为中国90个城市获得了1米分辨率的BRA。然而,由于GES图像片段的分布不均和获取时间的不一致,现有的BRA具有地理空间的不一致性,限制了其在广泛社会重要问题上的概括性,特别是在大地理和时间尺度的映射中。
方法论:为了解决这些挑战,我们开发了时空感知超分辨率分割(STSR-Seg)框架,该框架通过结合时间序列分析和先进的深度学习技术,提高了从低分辨率图像中提取高分辨率BRA的准确性。该方法利用从2016年到2021年获取的哨兵2号图像,通过一种创新的训练样本生成算法和时空感知学习策略,覆盖了中国的城市和农村区域。我们还评估了框架的性能,使用了城市区域的25万测试样本和农村区域的3万测试样本,得到了62.55%的F1得分和78.94%的召回率。
结果:CBRA数据集显示了与其他现有数据集的良好一致性,并且多年的性能一致性分析显示,我们的方法在不同时间点表现稳定。我们进一步分析了数据集在支持城市规划和可持续发展政策制定方面的应用潜力。
讨论与展望:尽管取得了显著成就,我们的方法在处理极密集的城市环境时的分辨率还有提升空间。未来的工作将探索更高分辨率的卫星数据和进一步优化的算法,以提高在复杂城市环境中的BRA提取精度。此外,通过进一步的算法创新和更广泛的国际合作,预计可以扩展这种方法的应用,以支持全球范围内的城市化研究和环境监测。
结论:CBRA数据集的开发展示了遥感技术在全球城市化和环境监测中的巨大潜力。通过不断的技术创新和国际合作,可以进一步提高数据的质量和可用性,为城市规划、灾害管理和环境保护等领域提供重要的决策支持。此外,CBRA数据集的成功也为未来的研究和应用提供了新的视角和方法,尤其是在遥感数据处理和大规模数据集的生成方面。
二、数据介绍
2016-2021年全国范围的2.5m分辨率的建筑屋顶数据!该数据集由北京师范大学唐宏教授的团队通过使用2016-2021Sentinel-2图像生成的,这也是中国第一个全覆盖且多年度的建筑物遥感识别结果数据集。数据格式为栅格格式(.tif),全国被分成215个空间网格,栅格的像元值为0和255,其中 0 为无建筑区域,255 表示建筑物屋顶区域。数据坐标为GCS_WGS_1984。
大家可以自己去下文提到的网站下载该数据,但是数据量较大,且需要科学上网!大家也可以在“探险家的数据窝”查询。
2016年:https://www.dilitanxianjia.com/15363/
2017年:https://www.dilitanxianjia.com/15368/
2018年:https://www.dilitanxianjia.com/15370/
2019年:https://www.dilitanxianjia.com/15372/
2020年:https://www.dilitanxianjia.com/15374/
2021年:https://www.dilitanxianjia.com/15376/
我们以2021年上海市建筑屋顶区域为例来预览一下:
我们再看看下细节:
数据简介:
北师大团队的研究中提出了一种名为“时空感知超分辨率分割框架(STSR-Seg)”的深度学习方法,以实现在大空间范围内从分辨率相对较低的图像中提取出可靠的的高分辨率的建筑屋顶区域。该团队通过使用2016-2021年Sentinel-2图像生成了分辨率为2.5m的长时序中国建筑屋顶区域(CBRA)数据集。这是中国第一个全覆盖且多年度的建筑物遥感识别结果数据集。
官方网站:
https://zenodo.org/record/7500612
数据命名:
CBRA被分成215个空间网格图块,命名为“CBRA_year_E**_N**.tif”,其中“年”是采样年份,“E**”和“N**”是指图块数据左上角的经度和维度坐标。2021年部分数据如下所示:
数据年份:
2016-2021年
栅格数值:
栅格的像元值为0和255,其中 0 为无建筑区域,255 表示建筑物屋顶区域。
数据坐标系:
GCS_WGS_1984
数据格式:
tif
空间分辨率:
2.5m
引用格式:
Liu, Zeping, Tang, Hong, Feng, Lin, & Lyu, Siqing. (2023). CBRA: The first multi-annual (2016-2021) and high-resolution (2.5 m) building rooftop area dataset in China derived with Super-resolution Segmentation from Sentinel-2 imagery (1.0) [Data set]. Zenodo.