Paddle 实现DCGAN

传统GAN

传统的GAN可以看我的这篇文章:Paddle 基于ANN(全连接神经网络)的GAN(生成对抗网络)实现-CSDN博客

DCGAN

DCGAN是适用于图像生成的GAN,它的特点是:

  • 只采用卷积层和转置卷积层,而不采用全连接层
  • 在每个卷积层或转置卷积层之间,插入一个批归一化层和ReLU激活函数

转置卷积层

转置卷积层执行的是转置卷积或反卷积的操作,即它是常规卷积层的反向操作。它接收一个低分辨率的输入,然后将其通过转置滤波器升采样到更高的分辨率。

对于一个卷积层,它的输出大小公式是:

o = \frac{i + 2p - k}{s} + 1

其中,o表示输出大小,i表示输入大小,p表示填充(padding),k表示卷积核大小(kernel_size),s表示步长(stride)。也就是说:输出大小 = (输入大小 - 卷积核大小 + 2 × 填充数) ÷ 步长 + 1

而对于一个转置卷积层,它的输出大小公式是:

o = s(i-1)-2p+k+u

 其中,o表示输出大小,i表示输入大小,p表示填充(padding),k表示反卷积核大小(kernel_size),s表示步长(stride),u表示输出填充(output padding)。也就是说:输出大小 = (输入大小 - 1) * 步长 - 2*填充 + 反卷积大小 + 输出填充

在paddle中,转置卷积层可以这么定义:

paddle.nn.Conv2DTranspose(in_channels, out_channels, kernel_size, stride, padding)

像卷积层一样,反卷积层的in_channels表示输入通道数(如形如(3, 32, 32)的图片张量的通道数就是3),out_channels表示输出通道数(如把(64, 32, 32)变成3通道的彩色图像(3, 32, 32))。 

代码实现

这里我们采用NWPU-RESISC45数据集,从中选择“freeway”(高速公路)作为训练数据,让机器生成高速公路的图片。这个训练数据内有700张256x256的图片,但由于我的电脑显存不足,因此将图片大小设置为64x64.

先写dataset.py:

import paddle
import numpy as np
from PIL import Image
import osdef getAllPath(path):return [os.path.join(path, f) for f in os.listdir(path)]class FreewayDataset(paddle.io.Dataset):def __init__(self, transform=None):super().__init__()self.data = []for path in getAllPath('./freeway'):img = Image.open(path)img = img.resize((64, 64))img = np.array(img, dtype=np.float32).transpose((2, 1, 0))if transform is not None:img = transform(img)self.data.append(img)self.data = np.array(self.data, dtype=np.float32)def __getitem__(self, idx):return self.data[idx]def __len__(self):return len(self.data)

然后写训练脚本:

from dataset import FreewayDataset
import paddle
from models import Generator, Discriminator
import numpy as npdataset = FreewayDataset()
dataloader = paddle.io.DataLoader(dataset, batch_size=32, shuffle=True)netG = Generator()
netD = Discriminator()if 1:try:mydict = paddle.load('generator.params')netG.set_dict(mydict)mydict = paddle.load('discriminator.params')netD.set_dict(mydict)except:print('fail to load model')loss = paddle.nn.BCELoss()optimizerD = paddle.optimizer.Adam(parameters=netD.parameters(), learning_rate=0.0002, beta1=0.5, beta2=0.999)
optimizerG = paddle.optimizer.Adam(parameters=netG.parameters(), learning_rate=0.0002, beta1=0.5, beta2=0.999)# 最大迭代epoch
max_epoch = 1000for epoch in range(max_epoch):now_step = 0for step, data in enumerate(dataloader):############################# (1) 更新鉴别器############################ 清除D的梯度optimizerD.clear_grad()# 传入正样本,并更新梯度pos_img = datalabel = paddle.full([pos_img.shape[0], 1, 1, 1], 1, dtype='float32')pre = netD(pos_img)loss_D_1 = loss(pre, label)loss_D_1.backward()# 通过randn构造随机数,制造负样本,并传入D,更新梯度noise = paddle.randn([pos_img.shape[0], 100, 1, 1], 'float32')neg_img = netG(noise)label = paddle.full([pos_img.shape[0], 1, 1, 1], 0, dtype='float32')pre = netD(neg_img.detach())  # 通过detach阻断网络梯度传播,不影响G的梯度计算loss_D_2 = loss(pre, label)loss_D_2.backward()# 更新D网络参数optimizerD.step()optimizerD.clear_grad()loss_D = loss_D_1 + loss_D_2############################# (2) 更新生成器############################ 清除D的梯度optimizerG.clear_grad()noise = paddle.randn([pos_img.shape[0], 100, 1, 1], 'float32')fake = netG(noise)label = paddle.full((pos_img.shape[0], 1, 1, 1), 1, dtype=np.float32, )output = netD(fake)# 这个写法没有问题,因为这个loss既会影响到netG(output=netD(netG(noise)))的梯度,也会影响到netD的梯度,但是之后的代码并没有更新netD的参数,而循环开头就清除了netD的梯度loss_G = loss(output, label)loss_G.backward()# 更新G网络参数optimizerG.step()optimizerG.clear_grad()now_step += 1############################ 输出日志###########################if now_step % 10 == 0:print(f'Epoch ID={epoch} Batch ID={now_step} \n\n D-Loss={float(loss_D)} G-Loss={float(loss_G)}')paddle.save(netG.state_dict(), "generator.params")
paddle.save(netD.state_dict(), "discriminator.params")

 最后编写图片生成脚本:

import paddle
from models import Generator
import matplotlib.pyplot as plt# 加载模型
netG = Generator()
mydict = paddle.load('generator.params')
netG.set_dict(mydict)# 设置matplotlib的显示环境
fig, axs = plt.subplots(nrows=2, ncols=5, figsize=(15, 6))  # 创建一个2x5的子图网格# 生成10个噪声向量
for i, ax in enumerate(axs.flatten()):noise = paddle.randn([1, 100, 1, 1], 'float32')img = netG(noise)img = img.numpy()[0].transpose((2, 1, 0))  # img.numpy():张量转np数组img[img < 0] = 0  # 将img中所有小于0的元素赋值为0# 显示图片ax.imshow(img)ax.axis('off')  # 不显示坐标轴# 显示图像
plt.show()

经过数次训练,最终的效果如下:

这样看来,至少有点高速公路的感觉了。 

参考

通过DCGAN实现人脸图像生成-使用文档-PaddlePaddle深度学习平台

卷积层和反卷积层输出特征图大小计算_输出特征图大小的计算方法-CSDN博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/10128.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

优先队列——大小堆—— priority_queue

本人博客主页 本篇博客相关博客 二叉树--讲解 文章目录 目录 文章目录 前言 一、priority_queue是什么&#xff1f; 二、priority_queue的使用 1、相关函数 2、代码使用 3、堆的插入删除 三、模拟实现 1、大框架 2、仿函数 3、向下调整 4、向下调整 总结 前言 在我们学习二叉…

免费SSL证书怎么签发

大家都知道SSL证书好&#xff0c;作用大&#xff0c;安全性高&#xff0c;能加权重&#xff0c;等保必须的参考值。但是如何选择合适且正确的证书也是至关重要的&#xff0c;网站更适合单域名证书、多域名证书、泛域名证书、还是多域名通配符证书。 首先大家要清楚&#xff0c…

网站访问提示不安全怎么办??

当网站访问时提示“不安全”&#xff0c;这通常与网站的SSL证书有关&#xff0c;或者是网站本身存在一些安全风险。以下是一些解决步骤和建议&#xff1a; 1、检查URL前缀&#xff1a;首先&#xff0c;检查URL是否以https://开头。如果仍然是http://&#xff0c;则网站没有使用…

我必须要吹一波MATLAB 2024a,太牛逼了!|福利:附安装教程及下载地址

最近逛MATLAB官网&#xff0c;发现MATLAB 2024a版本已经Pre-release了&#xff0c;翻了下release note&#xff0c;不得不感叹&#xff0c;实在是太强了&#xff01; 这次重点更新了四个工具箱&#xff1a; Computer Vision Toolbox Deep Learning Toolbox Instrument Contro…

鸿蒙内核源码分析(文件句柄篇) | 你为什么叫句柄

句柄 | handle int open(const char* pathname,int flags); ssize_t read(int fd, void *buf, size_t count); ssize_t write(int fd, const void *buf, size_t count); int close(int fd);只要写过应用程序代码操作过文件不会陌生这几个函数,文件操作的几个关键步骤嘛,跟把大…

Linux开发--Bootloader应用分析

Bootloader应用分析 一个嵌入式 Linux 系统从软件的角度看通常可以分为四个层次&#xff1a; 引导加载程序。包括固化在固件( firmware )中的 boot 代码(可选)&#xff0c;和 Boot Loader 两大部分。 Linux 内核。特定于嵌入式板子的定制内核以及内核的启动参数。 文件系统…

大华智能物联综合管理平台 fastjson远程代码执行漏洞复现

0x01 产品简介 大华ICC智能物联综合管理平台对技术组件进行模块化和松耦合,将解决方案分层分级,提高面向智慧物联的数据接入与生态合作能力。 0x02 漏洞概述 由于大华智能物联综合管理平台使用了存在漏洞的FastJson组件,未经身份验证的攻击者可利用 /evo-runs/v1.0/auths/…

【Qt】界面定制艺术:光标(cursor)、字体(font)、提示(toolTip)、焦点(focusPolicy)与样式表(styleSheet)的深度探索

文章目录 前言&#xff1a;1. cursor: 设置按钮的光标2. front&#xff1a;设置字体3. toolTip: 鼠标悬停提示4. focusPolicy&#xff1a;设置控件获取到焦点的策略5. styleSheet : 样式表总结&#xff1a; 前言&#xff1a; 在现代软件开发中&#xff0c;用户界面(UI)的设计和…

【MySQL 数据宝典】【事务锁】- 002 事务控制的演进

一、事务处理思路 1.1 排队 排队处理是事务管理最简单的方法&#xff0c;就是完全顺序执行所有事务的数据库操作&#xff0c;不需要加锁&#xff0c;简单的说就是全局排队。序列化执行所有的事务单元&#xff0c;数据库某个时刻只处理一个事务操作&#xff0c;特点是强一致性…

Java刷题-基础篇

目录 题目1&#xff1a;打印1~100内奇数和、偶数和 题目2&#xff1a;计算5的阶乘 题目3&#xff1a;计算 1!2!3!4!5! 的和 题目4&#xff1a;找1~100之间即能被3整除&#xff0c;又能被5整除的数字&#xff0c;要求必须使用break/continue 题目5&#xff1a;实现猜数字小…

LeetCode 112. 路径总和 || LeetCode 113. 路径总和ii

LeetCode 112. 路径总和 1、题目 题目链接&#xff1a;112. 路径总和 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true…

Linux:进程概念(三.详解进程:进程状态、优先级、进程切换与调度)

上次讲了进程这些内容&#xff1a;Linux&#xff1a;进程概念&#xff08;二.查看进程、父进程与子进程、进程状态详解&#xff09; 文章目录 1.Linux中的进程状态1.1前台进程和后台进程运行状态睡眠状态磁盘休眠状态停止状态kill指令—向进程发送信号 死亡状态 2.僵尸进程2.1僵…

iOS--runloop的初步认识

runloop的初步认识 简单认识runloopEvent looprunloop其实就是个对象NSRunloop和CFRunLoopRef的依赖关系runloop与线程runloop moderunloop sourceCFRunLoopSourceCFRunLoopObserverCFRunLoopTimer runloop的实现runloop的获取添加ModeCFRunLoopAddCommonMode 添加Run Loop Sou…

C语言 | Leetcode C语言题解之第79题单词搜索

题目&#xff1a; 题解&#xff1a; int directions[4][2] {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};bool check(char** board, int boardSize, int boardColSize, int** visited, int i, int j, char* s, int sSize, int k) {if (board[i][j] ! s[k]) {return false;} else if (…

NSSCTF中的web学习(md5())

目录 MD5的学习 [BJDCTF 2020]easy_md5 [LitCTF 2023]Follow me and hack me [LitCTF 2023]Ping [SWPUCTF 2021 新生赛]easyupload3.0 [NSSCTF 2022 Spring Recruit]babyphp MD5的学习 md5()函数&#xff1a; md5($a)&#xff1a;返回a字符串的散列值 md5($a,TRUE)&…

AWS云优化:实现性能和成本的最佳平衡

随着企业数字化转型的加速&#xff0c;对云计算平台的需求也不断增长。AWS作为云计算行业的领导者之一&#xff0c;提供了广泛的云服务和解决方案&#xff0c;帮助企业实现业务的创新和发展。在AWS云上部署应用程序和服务后&#xff0c;对其进行优化是至关重要的&#xff0c;以…

flutter报错

组件相关 type ‘List’ is not a subtype of type ‘List’ children: CardList.map((item) > Container( 加上 *** < Widget>*** 正常 type ‘(dynamic, dynamic) > Container’ is not a subtype of type ‘(CardType) > Widget’ of ‘f’ children: CardL…

YOLO系列笔记(十四)——Compute Canada计算平台及其常见命令介绍

Compute Canada平台及其常见命令介绍 前言优势使用方法1. 检查模块不带版本号带版本号 2. 加载模块3. 检查模块是否加载成功4. 创建虚拟环境5. 编写作业脚本6. 提交作业7. 监控作业状态8. 查看作业开始预计时间9. 查看作业的详细输出10. 取消作业 注意结语 前言 大家好&#x…

【吃透Java手写】4-Tomcat-简易版

【吃透Java手写】Tomcat-简易版-源码解析 1 准备工作1.1 引入依赖1.2 创建一个Tomcat的启动类 2 线程池技术回顾2.1 线程池的使用流程2.2 线程池的参数2.2.1 任务队列&#xff08;workQueue&#xff09;2.2.2 线程工厂&#xff08;threadFactory&#xff09;2.2.3 拒绝策略&…

表面的相似,本质的不同

韩信与韩王信&#xff0c;两个韩信的结局都是被刘邦所杀&#xff0c;似乎结局类似。但是&#xff0c;略加分析&#xff0c;就会发现其中存在本质的区别。 韩信属于必杀。他的王位是要来的&#xff0c;有居功自傲的本意&#xff0c;功高震主而且毫不避讳。而且年轻&#xff0c;…