AI赋能守护行车安全新防线,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建驾驶车辆场景下驾驶员疲劳分心驾驶行为智能检测预警系统

在当今社会,随着科技生产力的飞速发展,汽车早已成为人们日常出行不可或缺的交通工具。它不仅极大地提高了人们的出行效率,也为生活带来了诸多便利。然而,随着汽车保有量的不断增加,交通安全问题也日益凸显。疲劳驾驶和分心驾驶是导致交通事故的两大隐形杀手,它们严重威胁着司机和他人的生命安全。幸运的是,随着人工智能技术的蓬勃发展,我们有了应对这些安全隐患的新利器。疲劳驾驶和分心驾驶的危害不言而喻。长时间驾驶会使司机身体和精神处于高度紧张状态,反应速度和判断能力会逐渐下降,极易引发交通事故。而分心驾驶,如接打电话、玩手机、整理妆容等行为,会让司机的注意力从道路上转移,大大增加了事故发生的概率。据统计,每年因疲劳驾驶或分心驾驶导致的交通事故数量惊人,这不仅给无数家庭带来了痛苦,也给社会造成了巨大的损失。

然而,科技的进步总是在为人类的安全保驾护航。如今,人工智能技术已经渗透到我们生活的方方面面,汽车驾驶领域也不例外。借助车载内置安装的多摄像头,我们可以实时捕捉司机驾驶过程中的画面。这些摄像头就像是汽车的“眼睛”,能够全方位地观察司机的一举一动。而基于人工智能的检测识别预警模型,则是汽车的“大脑”,能够对这些画面进行智能分析识别。当司机出现疲劳驾驶或分心驾驶的迹象时,如频繁眨眼、打哈欠、目光偏离前方、操作仪表等行为,预警模型能够迅速捕捉到这些异常信号,并进行精准判定。一旦判定当前状态为疲劳驾驶或分心驾驶,系统会立即发出预警信息,提醒司机集中精神或尽快行驶到安全区域休息。这种预警机制不仅能够及时发现潜在的安全隐患,还能在关键时刻挽救生命。人工智能技术在车辆驾驶场景中的应用,不仅仅局限于疲劳驾驶和分心驾驶的检测。它还可以通过分析道路状况、交通流量等信息,为司机提供更安全、更高效的驾驶建议。例如,当遇到复杂路况时,系统可以提前预警并建议司机减速慢行;当发现前方有危险时,系统可以及时提醒司机采取避让措施。这些智能化的功能,让驾驶变得更加安全、便捷。

本文正是在这样的思考背景下,想要探索尝试从实验性质的角度出来构建分心驾驶智能化检测识别系统,首先看下实例效果:

接下来看下实例数据:

YOLOv5(You Only Look Once version 5)是YOLO系列目标检测算法的经典版本,由Ultralytics团队于2020年发布。其构建原理主要基于深度学习技术,通过构建神经网络模型来实现对图像中目标的快速、准确检测。

YOLOv5的模型结构主要由以下几个核心部分组成:

输入端:

Mosaic图像增强:通过组合多个不同的图像来生成新的训练图像,增加数据集的多样性,提高模型的鲁棒性。
自适应锚框计算:自动计算出最适合输入图像的锚框参数,提高目标检测的精度。
自适应图片缩放:根据目标尺度自适应地缩放输入图像的尺寸,以适应不同尺度目标的检测。
Backbone层:

通常采用CSPDarknet53作为主干网络,具有较强的特征提取能力和计算效率。
Focus结构:用于特征提取的卷积神经网络层,对输入特征图进行下采样,减少计算量和参数量。
Neck网络:

主要负责跨层特征融合和处理,提升模型对小目标的检测效果。常见的结构包括FPN(特征金字塔网络)和PANet等。
Head网络:

包含预测层,用于生成目标检测框和类别置信度等信息。
损失函数:

采用常见的目标检测损失函数,如IOU损失、二值交叉熵损失等,以及Focal Loss等用于缓解类别不平衡问题的损失函数。
二、技术亮点

单阶段检测:YOLOv5在单阶段内完成了目标的定位和分类,大大简化了检测流程,提高了检测速度。
高精度与高速度:通过优化模型结构和参数,YOLOv5在保持高精度(mAP可达83.8%)的同时,实现了较快的检测速度(可达140FPS),适用于实时检测场景。
易用性与可扩展性:YOLOv5提供了简单易用的接口和多种预训练模型,便于用户进行模型训练和部署。同时,支持自定义数据集进行训练,具有良好的可扩展性。
数据增强技术:如Mosaic图像增强等技术的应用,有效增加了数据集的多样性,提高了模型的鲁棒性和泛化能力。
三、优劣分析
优点:

速度快:YOLOv5的检测速度非常快,适用于实时性要求较高的应用场景。
精度高:在多种目标检测任务中表现出色,具有较高的准确率。
易于训练与部署:提供了简单易用的接口和多种预训练模型,降低了模型训练和部署的门槛。
可扩展性强:支持自定义数据集进行训练,适用于不同场景下的目标检测任务。
缺点:

对小目标检测效果不佳:相比于一些专门针对小目标检测的算法,YOLOv5在小目标检测上的表现可能有所不足。
对密集目标检测效果不佳:在密集目标检测场景中,YOLOv5可能会出现重叠框的问题,影响检测效果。
需要更多的训练数据:为了达到更好的检测效果,YOLOv5需要更多的训练数据来支撑模型的训练过程。
YOLOv5算法模型以其单阶段检测、高精度与高速度、易用性与可扩展性等优势在目标检测领域取得了显著成效。然而,在应对小目标和密集目标检测等挑战时仍需进一步优化和改进。

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5# Parameters
nc: 10    # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 1024]l: [1.00, 1.00, 1024]x: [1.33, 1.25, 1024]# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)]

实验阶段我们保持完全相同的参数设置,等待五款参数量级的模型全部开发训练完成后来对其进行全方位各指标的对比分析。

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

整体5款模型对比结果来看,五款模型最终没有拉开较为明显的差距,其中,n系列的模型效果略低一点,其余4款模型则达到了较为相近的水准,这里我们综合考虑使用s系列的模型作为最终的推理模型。

接下来看下s系列模型的详情。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

人工智能技术在车辆驾驶领域的应用也面临着一些挑战。例如,如何确保预警模型的准确性和可靠性,避免误报或漏报;如何保护司机的隐私,确保摄像头捕捉的画面不被滥用;以及如何让司机更好地接受和信任这些新技术等。但这些问题并不能阻挡人工智能技术在交通安全领域的发展,随着技术的不断进步和完善,这些问题都将逐步得到解决。总之,人工智能技术为交通安全带来了新的希望和机遇。它通过智能化的检测识别预警模型,为司机提供了一道坚实的安全防线。我们有理由相信,在人工智能的助力下,未来的汽车驾驶将更加安全、智能。让我们共同期待这一天的到来,也希望每一位司机都能时刻牢记交通安全,珍爱生命,文明驾驶。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/78733.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

onloyoffice历史版本功能实现,版本恢复功能,编辑器功能实现 springboot+vue2

文章目录 onloyoffice历史版本功能实现,版本恢复功能,编辑器功能实现 springbootvue2前提 需要注意把这个 (改成自己服务器的ip或者域名) 改成 自己服务器的域名或者地址我使用的onloyoffice版本 8.1.3.41. onloyoffice服务器部署 搜索其他文章2. 前段代…

概率论与统计(不确定性分析)主要应用在什么方面?涉及到具体知识是什么?

用户问的是概率论与统计(不确定性分析)的主要应用方面,涉及的具体知识以及具体公式。首先,我需要确定概率论与统计在哪些领域有应用,比如工程、金融、医学、数据科学等等。然后,具体知识部分应该包括概率论…

如何利用快照与备份快速恢复服务器的数据

在服务器上利用**快照(Snapshot)**和**备份(Backup)**快速恢复数据,可显著减少停机时间并确保业务连续性。以下是具体操作步骤和最佳实践: --- ### **1. 快照(Snapshot)恢复** **适…

安卓APP开发项目源码

在移动互联网蓬勃发展的今天,安卓应用几乎覆盖了人们生活的方方面面。从社交、购物,到医疗、教育,APP 的需求呈指数级增长。然而,如何高效、低成本地开发一款质量可靠的安卓应用,仍是很多开发者和团队关注的核心问题。…

遨游三防|30200mAh、双露营灯三防平板,见证堆料天花板

在工业4.0与智能化转型的浪潮中,专业设备对性能、防护及场景适应性的要求日益严苛。遨游通讯作为国家级高新技术企业,依托“危、急、特”场景的深耕经验,推出的旗舰级产品AORO-P300三防平板,以30200mAh超大容量电池、双露营灯设计…

【Python】Matplotlib:立体永生花绘制

本文代码部分实现参考自CSDN博客:https://blog.csdn.net/ak_bingbing/article/details/135852038 一、引言 Matplotlib作为Python生态中最著名的可视化库,其三维绘图功能可以创造出令人惊叹的数学艺术。本文将通过一个独特的参数方程,结合极…

OpenCV 图形API(57)颜色空间转换-----将图像从 RGB 色彩空间转换为 YUV 色彩空间函数RGB2YUV()

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 将图像从 RGB 色彩空间转换为 YUV 色彩空间。 该函数将输入图像从 RGB 色彩空间转换为 YUV。R、G 和 B 通道值的常规范围是 0 到 255。 在进行线…

Kubernetes(K8S)入门阶段详细指南

Kubernetes(K8S)入门阶段详细指南 一、容器技术基础:Docker核心操作与理解 1.1 Docker核心操作 镜像管理: 拉取镜像:docker pull ubuntu(以Ubuntu为例)查看本地镜像:docker images删除镜像:docker rmi <image_id>容器生命周期管理: 启动容器:docker run -d -…

AI大模型学习十一:‌尝鲜ubuntu 25.04 桌面版私有化sealos cloud + devbox+minio,实战运行成功

一、说明 没意思&#xff0c;devbox私有化不支持&#xff0c;看来这个开源意义不大&#xff0c;和宣传差距很大啊&#xff0c;那devbox就不用玩 用了ubuntu 25.04&#xff0c;内核为GNU/Linux 6.14.0-15-generic x86_64&#xff0c;升级了部分image&#xff0c;过程曲折啊 se…

[GXYCTF2019]Ping Ping Ping

解题步骤 1、先使用 内敛执行 查看当前的php文件 执行 命令执行 发现空格被过滤 ?ip127.0.0.1$IFS|$IFSwhomi 还有一个点就是这个 执行的命令是不能进行拼接的 可能就是被过滤了 | 所以我们使用 ; 进行绕过一下 空格过滤代替 $IFS ${IFS} ${IFS}$9 //这里$1到$9都可以 $IFS$1…

重温TCP通信过程

文章目录 1. 慢启动2. 拥塞避免 3. 快速重传和快速恢复 初识tcp报文 我们先来简单认识一下报文的格式,具体理解需要后面详细介绍 源端口和目的端口:顾名思义就是标识传输双方的信息首部长度:指的是TCP报头的长度,换句话来说,我们需要用一个属性来描述报头的长度,就说明TCP的报…

力扣HOT100之链表:23. 合并 K 个升序链表

这道题我是用最淳朴最简单的思路去做的&#xff0c;用一个while循环持续地将当前遍历到的最小值加入到合并链表中&#xff0c;while循环中使用一个for循环遍历整个指针数组&#xff0c;将其中的最小值和对应下标记录下来&#xff0c;并将其值加入到合并链表中&#xff0c;同时对…

Spring Boot 支持政策

&#x1f9d1;&#x1f4bb; Spring Boot 支持政策 ✒️ Andy Wilkinson 于2023年12月7日编辑本页 32次修订 &#x1f4cc; 核心政策 &#x1f6e1;️ VMware Tanzu 开源支持政策 Spring Boot 针对关键错误和安全问题提供支持 &#x1f4c6; 版本支持周期 1️⃣ 主要版本&a…

WeakAuras Lua Script TOC BOSS2 <Lord Jaraxxus>

WeakAuras Lua脚本&#xff08;WA 字符串&#xff09; 十字军试炼老2 加拉克苏斯 血肉成灰 !WA:2!TIv7VnYrz8UXuDudiDN7PqFfCdTHKYLOeN7sBpXvKDIZf36Kyw7KRT3DYE2Dh7DAwV7CZSoXUOIewf4GdAfgbu13LPasv8MS4diavKoH4RSkIp0phXDT8je5FGYZmZU2oVCqrGLJZUpZZoZZB)EEz1wkr9ewjSU6MD5u…

Spring security详细上手教学(二)用户管理

Spring security详细上手教学&#xff08;二&#xff09;用户管理 这章节主要学习&#xff1a; 如何使用UserDetails接口描述用户在鉴权流中使用UserDetailsService自定义的UserDetailsService实现自定义的UserDetailsManager实现在鉴权中使用JdbcUserDetialsManager 在Spri…

网络安全厂商F5荣登2025 CRN AI 100榜单,释放AI潜力

近期&#xff0c;网络安全厂商F5凭借其应用交付和安全技术与前沿的人工智能洞察&#xff0c;成功入选“2025 CRN AI 100 榜单”&#xff0c;并跻身“领导者”之列。这一荣誉的获得&#xff0c;彰显了F5在助力企业拥抱人工智能创新的过程中&#xff0c;无需牺牲性能、灵活性或安…

4.RabbitMQ - 延迟消息

RabbitMQ延迟消息 文章目录 RabbitMQ延迟消息一、延迟消息介绍二、实现2.1 死信交换机2.2 延迟消息插件2.3 取消超时订单 一、延迟消息介绍 延迟消息&#xff1a;生产者发送消息时指定一个时间&#xff0c;消费者不会立刻收到消息&#xff0c;而是在指定时间后才收到消息 用户…

5.学习笔记-SpringMVC(P53-P60)

1.响应 &#xff08;1&#xff09;响应页面 &#xff08;2&#xff09;响应数据&#xff08;异步提交&#xff09;&#xff1a;文本数据、json数据 2.REST风格 (1)REST:表现形式状态转换。 (2)传统风格资源描述形式 3.Restful入门案例 5.基于RESTful页面数据…

Golang | 搜索表达式

// (( A | B | C ) & D ) | E & (( F | G ) & H )import "strings"// 实例化一个搜索表达式 func NewTermQuery(field, keyword string) *TermQuery {return &TermQuery{Keyword: &Keyword{Field: field, Word: keyword},} }func (tq *TermQuery…

LangChain构建大模型应用之RAG

RAG(Retrieval-augmented Generation 检索增强生成)是一种结合信息检索与生成模型的技术,通过动态整合外部知识库提升大模型输出的准确性和时效性。其核心思想是在生成答案前,先检索外部知识库中的相关信息作为上下文依据,从而突破传统生成模型的静态知识边界。 为什么我们…